図目次

2.1	開放端を持つ音響管の振動板による強制振動 $(au$ は伝搬遅延時間,	
	r_l, r_g は端面での反射係数 $)$	3
2.2	1/4 波長の長さを有する音響管の負荷端における粒子速度波形。	
	y(t) は負荷端での粒子速度の瞬時値 ,縦軸中央付近に描かれてい	
	るのはピストン振動板の振動速度 $\mathit{v}(t)$ 。いずれも V_{g} で規格化し	
	て表示。	4
2.3	平面波による微小体積部分の変位	5
2.4	音圧と粒子速度の分布を表す複素平面上の点 $ar{P}$ と $ar{V}$	6
2.5	終端反射係数 r_l に対する伝達特性の変化。 $r_l=-1.0,-0.5,-0.2,l=$	
	17 cm, $c = 340 \text{ m/s}_{\circ}$	7
2.6	粒子速度源の配置位置と負荷端での粒子速度の関係	8
2.7	声道断面積関数 $A(x)$ の階段関数による近似 \dots	9
2.8	音響管の電気的等価回路	10
2.9	分岐する音響管と等価回路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2.10	隣接する音響管における体積速度の前進波,後進波成分の表現.	12
2.11	声門インピーダンス $Z_g(t)$ と声門下部インピーダンス Z_s を含む	
	等価回路	13
2.12	放射過程の電気的な等価回路	14
2.13	無限平面バフルにセットされた円形振動板	15
2.14	無限平面バフルに設置された円形振動板の規格化放射インピー	
	ダンスの実部 (R_r) と虚部 (X_r) 。規格化定数は特性インピーダン	
	ス $ ho c/\pi a^2$ 。 k 波数, $ ho$ 空気密度, c 音速, a 振動板の半径。	16
2.15	円形振動板の放射インピーダンスから求められる開口端補正 (振	
	動板の径 a で規格化 $)$	17
2.16	声道モデルとして考える矩形管の非対称な接続	18
2.17	矩形音響管内の座標系	19
2.18	高次モードを含む音響管の等価回路 (各モードに1つの線路が対	
	応する)	20
2.19	非対称に接続された2つの音響管(斜線部分が共通領域)	21

2.20	左端中央部から幅 5 mm のスリット状の速度源で駆動した場合	
	の音圧分布 $(4~\mathrm{kHz})$ 。 $(\mathrm{a}),(\mathrm{b})$ の各図で上が水平断面 $(y-z$ 面),	
	下が垂直断面 $(x-z$ 面) を表す。	22
2.21	管軸にランダム変動を与えた場合の伝達特性の変動 $(50$ セットの	
	音響管を構成して重ね書きしたもの)	23
2.22	歯列咬合を模擬したスリット間の音圧分布 (上図:振幅,下図:位相)	24
2.23	音響管を用いたインピーダンス測定	25
2.24	口唇端反射係数の周波数特性。シンボル:/ $\mathrm{a}/(\mathrm{I,III,IV,V}),/\mathrm{u}/(\mathrm{II})$	
	発話時のレプリカを用いた測定値,実線:付加的な 1 区間による	
	近似特性。位相特性は π だけシフトして描かれている $(0~{ m Hz}$ で	
	反射係数の値は-1 となる)。	26
2.25	口腔部レプリカ内部の正中矢状面での音圧分布・・・・・・・・	27
2.26	口腔部レプリカ内部の水平面での音圧分布	28

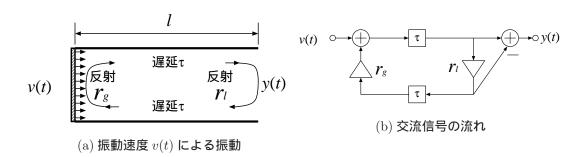


図 2.1: 開放端を持つ音響管の振動板による強制振動 $(\tau$ は伝搬遅延時間 , r_l, r_g は端面での反射係数)

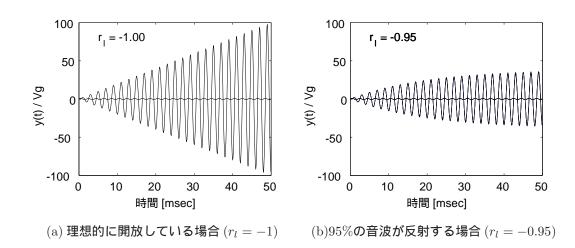


図 2.2: 1/4 波長の長さを有する音響管の負荷端における粒子速度波形。y(t) は負荷端での粒子速度の瞬時値,縦軸中央付近に描かれているのはピストン振動板の振動速度 v(t)。 いずれも V_g で規格化して表示。

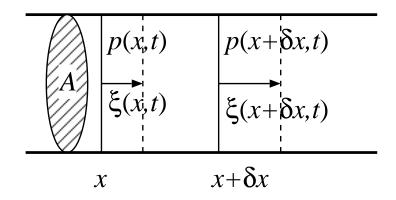


図 2.3: 平面波による微小体積部分の変位

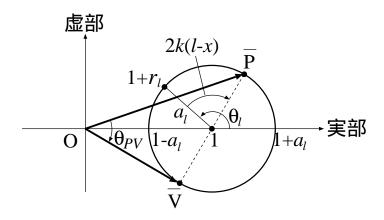


図 2.4: 音圧と粒子速度の分布を表す複素平面上の点 $ar{P}$ と $ar{V}$

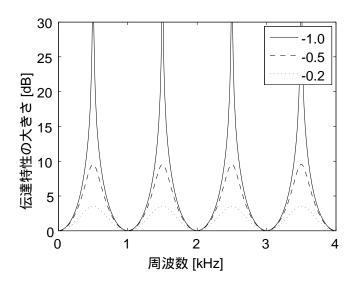
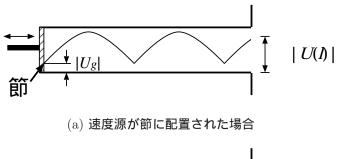
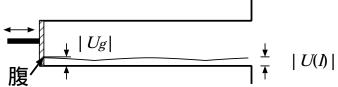




図 2.5: 終端反射係数 r_l に対する伝達特性の変化。 $r_l=-1.0,-0.5,-0.2,l=17$ cm, $c=340~{
m m/s}$ 。

(b) 速度源が腹に配置された場合

図 2.6: 粒子速度源の配置位置と負荷端での粒子速度の関係

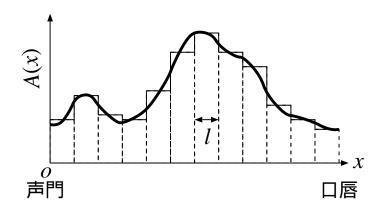


図 2.7: 声道断面積関数 A(x) の階段関数による近似

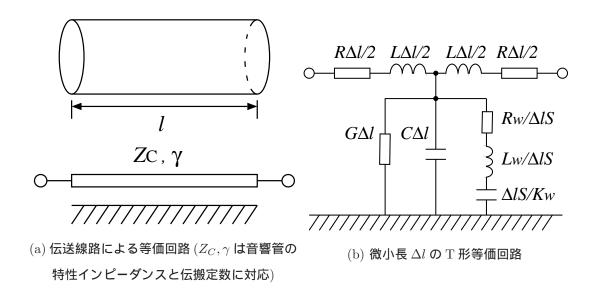


図 2.8: 音響管の電気的等価回路

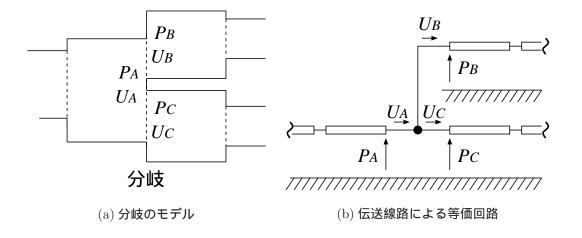


図 2.9: 分岐する音響管と等価回路

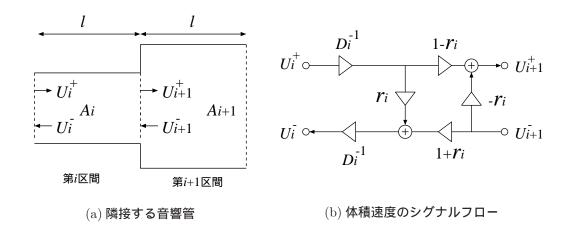


図 2.10: 隣接する音響管における体積速度の前進波,後進波成分の表現

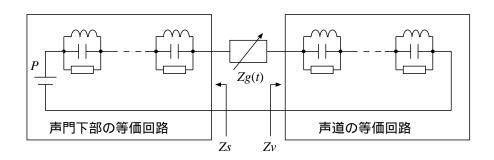


図 2.11: 声門インピーダンス $Z_g(t)$ と声門下部インピーダンス Z_s を含む等価 回路



図 2.12: 放射過程の電気的な等価回路

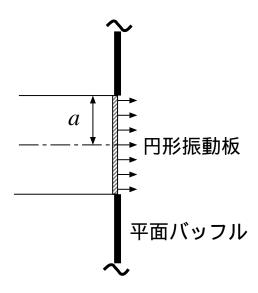


図 2.13: 無限平面バフルにセットされた円形振動板

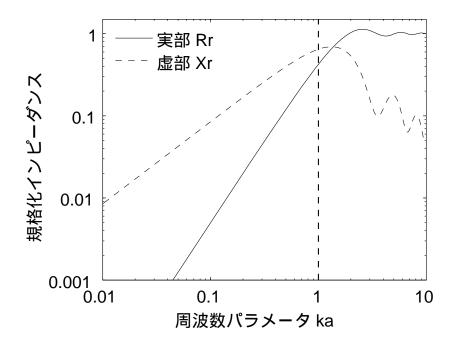


図 2.14: 無限平面バフルに設置された円形振動板の規格化放射インピーダンスの実部 (R_r) と虚部 (X_r) 。規格化定数は特性インピーダンス $\rho c/\pi a^2$ 。k 波数, ρ 空気密度,c 音速, a 振動板の半径。

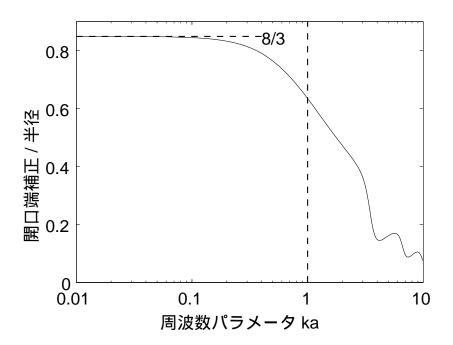


図 2.15: 円形振動板の放射インピーダンスから求められる開口端補正 (振動板の径 a で規格化)

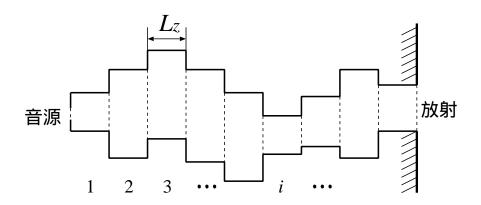


図 2.16: 声道モデルとして考える矩形管の非対称な接続

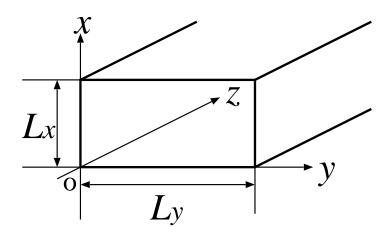


図 2.17: 矩形音響管内の座標系

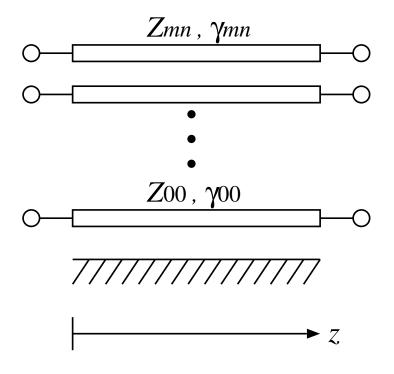


図 2.18: 高次モードを含む音響管の等価回路 (各モードに 1 つの線路が対応する)

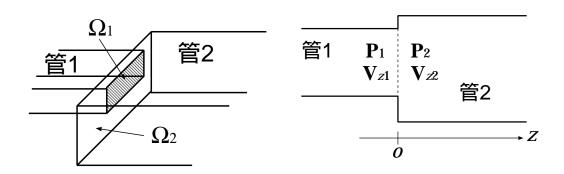


図 2.19: 非対称に接続された 2 つの音響管 (斜線部分が共通領域)

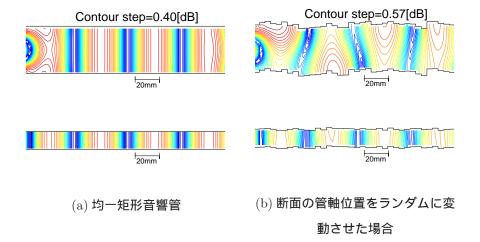


図 2.20: 左端中央部から幅 $5~{
m mm}$ のスリット状の速度源で駆動した場合の音圧分布 $(4~{
m kHz})$ 。 (a),(b) の各図で上が水平断面 (y-z 面),下が垂直断面 (x-z 面) を表す。

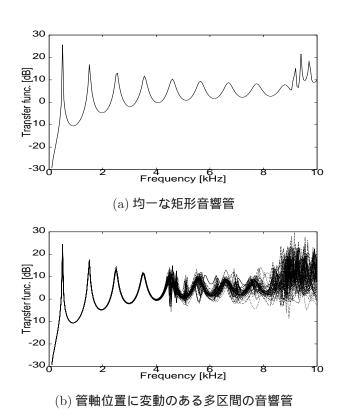


図 2.21: 管軸にランダム変動を与えた場合の伝達特性の変動 (50 セットの音響管を構成して重ね書きしたもの)

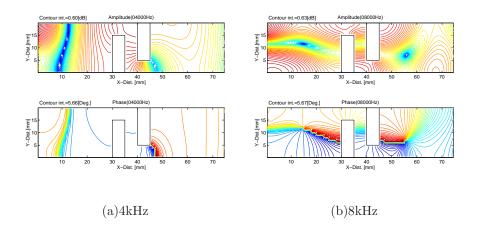


図 2.22: 歯列咬合を模擬したスリット間の音圧分布 (上図:振幅,下図:位相)

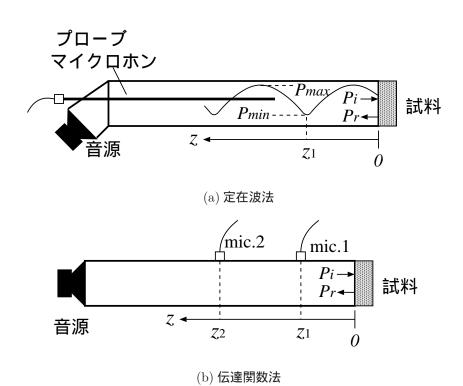


図 2.23: 音響管を用いたインピーダンス測定

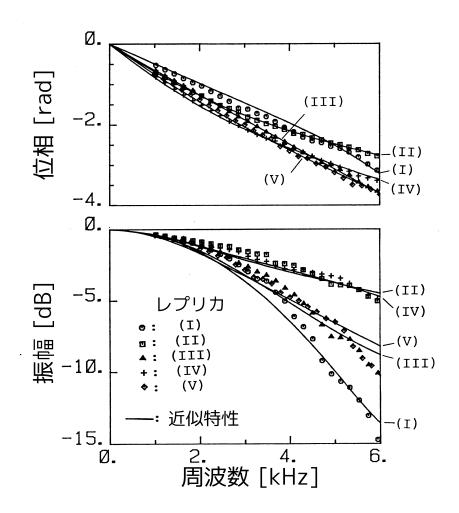


図 2.24: 口唇端反射係数の周波数特性。シンボル:/a/(I,III,IV,V),/u/(II) 発話時のレプリカを用いた測定値,実線:付加的な 1 区間による近似特性。位相特性は π だけシフトして描かれている (0 Hz で反射係数の値は-1 となる)。

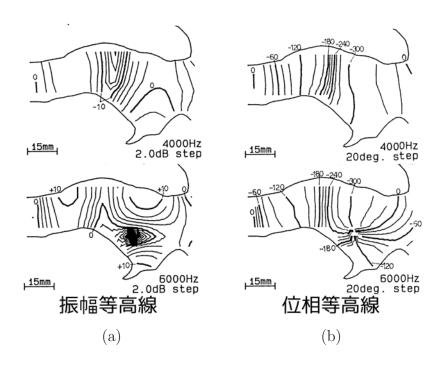


図 2.25: 口腔部レプリカ内部の正中矢状面での音圧分布

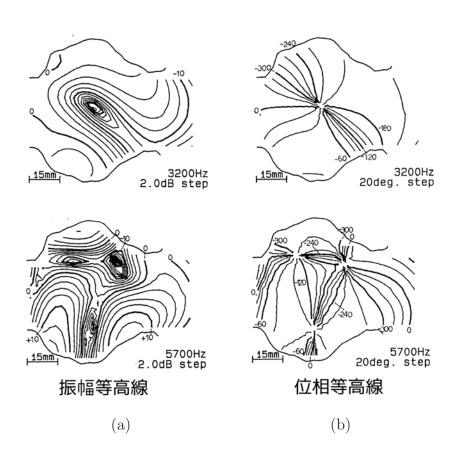


図 2.26: 口腔部レプリカ内部の水平面での音圧分布