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ABSTRACT
This paper describes an application of IR and text categorization
methods to a highly practical problem in biomedicine, specifically,
Gene Ontology (GO) annotation. GO annotation is a major activity
in most model organism database projects and annotates gene func-
tions using a controlled vocabulary. As a first step toward automatic
GO annotation, we aim to assign GO domain codes given a specific
gene and an article in which the gene appears, which is one of the
task challenges at the TREC 2004 Genomics Track. We approached
the task with careful consideration of the specialized terminology
and paid special attention to dealing with various forms of gene
synonyms, so as to exhaustively locate the occurrences of the tar-
get gene. We extracted the words around the gene occurrences
and used them to represent the gene for GO domain code anno-
tation. As a classifier, we adopted a variant of k-Nearest Neighbor
(kNN) with supervised term weighting schemes to improve the per-
formance, making our method among the top-performing systems
in the TREC official evaluation. Moreover, it is demonstrated that
our proposed framework is successfully applied to another task of
the Genomics Track, showing comparable results to the best per-
forming system.

Categories and Subject Descriptors
H.2.4 [Database management]: Systems—Textual databases; H.3.1
[Information storage and retrieval]: Content Analysis and Index-
ing—Abstracting methods, Indexing methods, Linguistic process-
ing; J.3 [Life and medical sciences]: Biology and genetics
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1. INTRODUCTION
Given the intense interest and fast growing literature, biomedicine

is an attractive domain for exploration of intelligent information
processing techniques, such as information retrieval (IR), informa-
tion extraction, and information visualization. As a result, it has
been increasingly drawing much attention of researchers in IR and
other related communities [6, 7, 9, 17]. As far as we know, how-
ever, there have been few products of research efforts focusing on
this particular domain in past SIGIR conferences. This paper in-
troduces a successful application of general IR and text categoriza-
tion methods to this evolving field of research targeting biomedical
texts.

In the post-genomic era, one of the major activities in molecular
biology is to determine the precise functions of individual genes or
gene products, which has been producing a large number of publi-
cations with the help of high throughput gene analysis. To structure
the information related to gene functions scattered over the litera-
ture, a great deal of efforts has been made to annotate articles by us-
ing the Gene Ontology1 (GO) terms. GO is a controlled vocabulary
developed for describing functions of gene products in order to fa-
cilitate uniform queries across different model organism databases,
such as FlyBase, Saccharomyces Genome Database (SGD), and the
Mouse Genome Informatics (MGI) Database. GO terms are ba-
sically organized in hierarchical structures (but a child node may
have multiple parent nodes) under three top level nodes: molecu-
lar function (MF), biological process (BP), and cellular component
(CC). Figure 1 illustrates the structure of GO.
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Figure 1: Structure of Gene Ontology.

Because of the large number of publications and specialized con-
tent, GO annotation requires extensive human efforts and substan-
tial domain knowledge, which is usually conducted by experts.
Thus, there is a potential need to automate or semi-automate GO
annotation, which could greatly alleviate the human curation. This
was one of the primary objectives pursued at the Text Retrieval
Conference (TREC) 2004 Genomics Track [8].
1http://www.geneontology.org/
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The 2004 Genomics Track consisted of two tasks:ad hoc re-
trieval andcategorizationtasks. For the former, given 50 topics
obtained through interviews with real research scientists, the par-
ticipants were required to find relevant documents from 10 years’
worth of MEDLINE data. The latter task (which is our focus in this
paper) was composed of two sub-tasks; one was called thetriage
task and the other theannotationtask. Both tasks mimicked some
parts of GO annotation process currently carried out by human ex-
perts at Mouse Genome Informatics (MGI). Figure 2 depicts the
conceptual flow of the two sub-tasks.
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Figure 2: A conceptual flow of the categorization sub-tasks.

In short, the goal of the triage task was to correctly identify whether
an input article contains experimental evidence that warrant GO an-
notation regardless of specific GO codes. The annotation task was
the next step to the triage decision, and the goal was to correctly
assign GO domain codes, i.e., MF, BP, and CC (not the actual GO
terms) or not to assign them, i.e., negative, for each of the given
genes that appear in the article.2 Note that there may be more than
one gene associated with an article and there may be more than one
domain code assigned to a gene.

The triage task can be seen as a standard text categorization prob-
lem to classify an input article into predefined classes (positive and
negative), while the annotation task required to classify not an arti-
cle as a whole but each given gene appearing in the article. In other
words, each〈article, gene〉 pair was to be independently classified
even when two (or more) genes appeared in a single article. We
addressed the problem by extracting document fragments that were
likely to contain the gene in question by gene name expansion and
a flexible term matching scheme. The resulting set of document
fragments were then used for representing the particular gene. For
classification, we used a variant of the k-Nearest Neighbor (kNN)
classifier with supervised term weighting schemes [2] which con-
sider word distributions in different classes.

This paper focuses on an application of general IR and text cate-
gorization techniques to the domain-specific, highly practical prob-
lems with careful consideration of the properties of the terminology
in biomedicine. In the following, we first introduce our proposed
framework for GO domain code annotation, and then describe the
data and evaluation measures used in our experiments. We show
the effectiveness of our framework through a number of experi-
ments with various different settings. In addition, it is demonstrated
that our framework can be successfully applied to the triage task as
well, making it among the top-performing systems for both triage
and annotation tasks in the TREC official evaluation.

2Assuming perfect triage decision, there would not be negative
cases at the annotation stage. However, there were negative in-
stances purposefully included in the TREC data (Section 3.1).

2. METHODS
This section details our proposed framework for automatic GO

domain code annotation. Hereafter, we will refer to GO domain
code annotation as “GO annotation” for short.

2.1 Document representation

2.1.1 Identification of relevant paragraphs
GO annotation needs to be made not for each input article but

for each gene for which there is experimental evidence that war-
rants GO annotation. Therefore, each〈article, gene〉 pair needs to
be treated as a “document” or “text” in the sense of text categoriza-
tion. For this purpose, we propose a simple but effective approach
to extract only the text fragments that are likely to contain the gene
in question and treat a set of the extracted text fragments as a doc-
ument associated with the〈article, gene〉 pair. This process can be
broken down intogene name expansionandgene name identifica-
tion, each explained in the following.

Gene name expansion.Gene name expansion refers to a pro-
cess to associate synonyms with a given gene name. Gene names
are known to have several types of synonyms including aliases, ab-
breviations, and gene symbols. For instance, “membrane associ-
ated transporter protein” can be referred to asunderwhite, dominant
brown, Matp, uw, Dbr, bls, Aim1, etc. Therefore, all of these names
should be searched to identify text fragments mentioning the gene.
To obtain such synonyms, we used two sources of information: the
article itself and a gene name dictionary. As described later in Sec-
tion 3, the input article is annotated with SGML tags and there are
two relevant fields,<KEYWORD> and<GLOSSARY>, in which a gene
name and its synonym may be explicitly defined.3 Incidentally,
we also examined the use of body text because gene name abbre-
viations often appear with parentheses immediately following the
official names [14]. However, it slightly degraded classification in
our preliminary experiments and thus was not used in the following
experiments.

As another source of gene name expansion, a gene name dic-
tionary was automatically complied from existing databases. For
this work, we experimentally used the SWISS-PROT [11] and Lo-
cusLink [12] databases. The resulting name dictionary contained
493,473 records, where each record had a gene/protein name as a
keyword and lists its synonyms. Hereafter, we use the word “gene
names” to refer to all of official names, aliases, abbreviations, and
gene symbols.

It is often the case that gene name dictionaries automatically
compiled from existing databases, such as ours, are not very ac-
curate due to multi-sense gene names, inconsistent format in the
databases, etc. It requires manual curation to obtain high-quality
dictionaries [3, 5], which are important for general-purpose gene
name recognition systems. Fortunately, the quality of dictionary
would not be as important in our application, because even if the
dictionary provides wrong gene names as synonyms of a given
gene, the wrong names are unlikely to appear in the article as they
are irrelevant to the target gene with which the article is associated.

Gene name identification.The next step is to find text frag-
ments mentioning the gene in question. Here, the problem is that,
besides synonyms, gene names often have many variants due to ar-
bitrary use of special symbols, white space, and capital and small
letters [3]. To tolerate these minor differences in identifying gene

3The DTD is found at http://highwire.stanford.edu/
about/dtd/
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names, both gene names and text were preprocessed as follows (the
actual order is not important).

• Replace all special symbols (non-alphanumeric characters)
with space (e.g.,NF-kappa→ NF kappa)

• Insert space between different character types, such as alpha-
bets and numerals (e.g.,Diet1→ Diet 1)

• Insert space between Greek alphabets and other words (e.g.,
kappaB→ kappa B)

• Lowercase all characters

Then, each paragraph (identified by SGML tags) in the article
was scanned if it contained any of the gene names associated with
the gene in question. Note that section titles were appended to
each paragraph since they were often found to be descriptive. In
addition, if the paragraph referred to figures and/or tables for the
first time in the article, their captions were also appended to the
paragraph.

We have so far obtained gene name synonyms and normalized
both gene names and text to facilitate gene name identification.
However, there remains another problem. That is, gene names are
frequently written in slightly different forms with extra words, dif-
ferent word order, etc. For example, “peroxisome proliferator acti-
vated receptor binding protein” may be referred to as “peroxisome
proliferator activatorreceptor (PPAR)-binding protein” where un-
derlines indicate the differences. To deal with the problem, we used
approximate word matching. To be precise, for each target gene
name and each candidate which mentions any word composing the
gene name, a word-overlap score defined below was computed.

Overlap(gene, candidate) =
M − α · U

N + β
(1)

whereM andU denote the numbers of matching and unmatching
words, respectively;α is a penalty for unmatching words (set to
0.3); N is the number of words composing the gene name; andβ
penalizes shorter gene names (set to 2). If any candidate associ-
ated with a paragraph had a score exceeding a predefined threshold
(set to 0.3), the paragraph was used to represent the〈article, gene〉
pair after stopword removal based on the PubMed stopword list4

and stemming by Lovins stemmer [10]. For instance, the exam-
ple of “peroxisome. . .” above has five matching and two unmatch-
ing words, resulting in an overlap score of 0.55. Because it is
greater than the threshold (0.3), the paragraph containing the can-
didate is extracted and used in part to represent the corresponding
〈article, gene〉 pair. Incidentally, the values of the parameters were
determined based on our preliminary experiments on the training
data.

Here, we treated a paragraph as a unit since it is thought to be
organized in a single topic and seems to be an appropriate unit of
extraction. In Section 4.2, we will examine other alternative units.

2.1.2 MeSH terms
Along with the article itself, we took advantage of external re-

sources, specifically, Medical Subject Heading (MeSH)5 terms as-
signed to the article. MeSH terms are controlled vocabularies de-
veloped at the national library of medicine (NLM) for indexing
biomedical articles and are annotated by human experts at NLM.

4http://www.ncbi.nlm.nih.gov/entrez/query/static/
help/pmhelp.html
5http://www.nlm.nih.gov/mesh/

For each input article, all the associated MeSH terms were ob-
tained from the MEDLINE database6 using Entrez Utilities.7 Be-
cause these MeSH terms are annotated with articles (not with par-
ticular genes), they were added toeachdocument (a set of para-
graphs) representing a pair of the article andanygene coupled with
it. Note that a special symbolMESH+ was concatenated to each
MeSH term so as to distinguish MeSH from other terms.

2.1.3 Feature selection
Feature selection identifies the features (terms) that are more in-

formative in terms of classification according to some statistic mea-
sure, which not only reduces the size of data but often improves
classification [19]. For this work, we applied the chi-square statistic
method to the terms contained in the documents obtained through
the previous steps.

Chi-square statistic of termt in classc is defined as:

χ2(t, c) =
N(AD−CB)2

(A + C) (B + D) (A + B) (C + D)
(2)

wherec is one of the GO domain codes (BP, MF, and CC) or nega-
tive (NEG),A is the number of documents containing termt in class
c, B is the number of documents containingt in classes other than
c, C is the number of documents not containingt in c, D is the num-
ber of documents not containingt in classes other thanc, andN is
the total number of documents. For each termt, chi-square statistic
was computed for every class, and the maximum score was taken
as the chi-square statistic for termt; that is,χ2(t) = maxi χ

2(t, ci).
Only the topn terms with higher chi-square statistics were used for
the following processes. We empirically chosen=3000 based on
our preliminary experiments, where 234 terms were highest with
class BP, 173 with MF, 277 with CC, and 2316 with NEG.

2.1.4 Term weighting
Each 〈article, gene〉 pair was associated with a set of selected

terms in the preceding steps. To applykNN for classification as de-
scribed in the next section, we converted it to a term vector adopting
the classic vector space model [13] with conventional TFIDF (term
frequency-inverse document frequency) defined as:

TFIDF(t, d) = (1 + log(TF(t, d)) · log
N

DF(t)
(3)

where TF(t,d) is a term frequency of termt within documentd,
N is the total number of documents, and DF(t) is the number of
documents in which termt appears. In cases where TF(t, d) = 0 or
DF(t) = 0, TFIDF(t,d) is defined to be 0.

We also tested another term weighting scheme, so calledsuper-
vised term weighting, proposed by Debole and Sebastiani [2]. It
takes into account pre-labeled class information in training data and
re-uses statistics computed in the feature selection step (e.g., chi-
square statistics, information gain,. . .) in place of IDF. We used
TFCHI which is defined as a product of TF and chi-square statis-
tics. Specifically, we tested two variants of the scheme, denoted as
TFCHI1 and TFCHI2.

TFCHI1(t,d) = (1 + log(TF(t,d)) · χ2(t)

TFCHI2(t,d) = (1 + log(TF(t,d)) · log(χ2(t))
(4)

2.2 kNN classifiers
We used a variant ofkNN classifiers to assign GO domain codes

to each pair of article and gene.kNN is an instance-based classifier
6http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
7http://www.ncbi.nlm.nih.gov/entrez/query/static/
eutils help.html
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which is reported as one of the best classifiers for text categoriza-
tion in both newswire and medical domains [18]. In brief, it clas-
sifies inputv to one or more predefined classes depending on what
classes its neighbors belong to. The decision rule can be expressed
as:

if Score(c, v) =
∑

i

sim(v,nc,i) > tc, then assignc to v (5)

wherenc is thek nearest neighbors having classc ∈ {BP, MF, CC, NEG},
tc is a per-class threshold, andsim(v,nc,i) returns cosine similarity
between the arguments. Thresholdtc can be optimized to maximize
an arbitrary metric (e.g.F1-score) using training data.

We slightly modified the scoring scheme to multiply the similar-
ity scores by the number ofk neighbors having classc, denoted as
|nc|.
if Score(c, v) =

∑

i

sim(v,nc,i) × |nc| > tc, then assignc to v (6)

It intended to boost the scores for more frequent classes within the
k neighbors. This modification slightly but constantly improved
classification (around 2% inF1 score).

Although classc includes NEG, we did not apply the decision
rule above for the negative class. In other words, if none of the
GO domain codes was assigned to input, then it was considered to
be negative. This ensures that an input does not have both positive
(BP, MF, or CC) and negative classes together. It should be noted
that, however, negative class does affect classification because more
negative instances included ink neighbors generally lead to lower
scores for the positive classes.

3. DATA AND EVALUATION MEASURES

3.1 Data sets
We used the same data set as the Genomics Track annotation

task. The data set is composed of 504 full-text articles for train-
ing and 378 for test, both in SGML format. Each of the articles
is associated with one or more genes and each gene is annotated
with one or more classes (BP, MF, and CC) or negative by MGI cu-
rators. The total numbers of triplets〈article, gene, class〉 are 1661
(589 positives and 1072 negatives) and 1077 (495 positives and 582
negatives) for the training and test data, respectively. Because gene
names often contain Greek alphabets, character entities used for
representing Greek alphabets (e.g., “&agr;” for α) were converted
to the corresponding English spellings (e.g.,alpha) in advance to
facilitate gene name identification.

The training data were used for tuning several parameters includ-
ing the number ofk neighbors and per-class thresholdstc in Equa-
tion (6) and were used as pre-labeled instances forkNN to classify
the test data.

3.2 Measures
Following the TREC Genomics Track, we used micro-averaged

F1 score as an evaluation metric for GO annotation, so as to make
our results comparable with the official evaluation.F1 is defined as
the harmonic mean of precision and recall as in Equation (7).

Recall=
# of classes correctly predicted by the system

# of pre-labeled classes

Precision=
# of classes correctly predicted by the system

# of classes predicted by the system

F1 =
2× Precision× Recall

Precision+ Recall

(7)

where classes are biological process (BP), cellular component (CC),
and molecular function (MF) and do not include negative (NEG).

4. RESULTS AND DISCUSSIONS

4.1 Primary results
Our proposed framework for GO annotation was applied to the

test data, where the per-class thresholdstc in Equation (6) and other
parameters including the number ofk neighbors were optimized to
maximizeF1 for each term weighting scheme using the training
data. For instance, for TFCHI2, k was set to 140 andtc was set
to 1276, 936, and 1790 for BP, CC, and MF, respectively. Table 1
compares our results (TFIDF, TFCHI1, and TFCHI2) on the test
data and the representative results from the TREC official evalua-
tion.

Table 1: The TREC official results and our results for GO do-
main code annotation (on the test data set).

Prec Recall F1

Best 0.441 0.769 0.561
TREC Worst 0.169 0.133 0.149

Mean 0.360 0.581 0.382
TFIDF 0.549 0.642 0.592

Ours TFCHI1 0.480 0.630 0.545
TFCHI2 0.508 0.731 0.600

Despite the simplicity of our method, it performed quite well, es-
pecially, TFIDF and TFCHI2, as compared with the official results.
In the following sections, we take a closer look at major features
or components of our framework and empirically investigate their
contribution.

4.2 Additional experiments

4.2.1 Alternative settings
We have made a number of arbitrary decisions in developing our

framework. To investigate the effectiveness, we conducted several
experiments with various different settings. Particularly, we were
interested if the features or components below had made any im-
pact.

• Gene name identification: We identified paragraphs that were
likely to contain the target gene using approximate word match-
ing (see Section 2.1). Did it actually improve GO annotation?
To examine it, we used exact word matching to identify rele-
vant paragraphs.

• Gene name dictionary: Assuming gene name identification
above worked, did the dictionary for gene name expansion
contribute to the performance? We tested our framework
without the help of the dictionary.

• Glossary and keyword fields: Similarly, did the use of SGML
tags,<GLOSSARY> and<KEYWORD>, for finding gene name
synonyms improve GO annotation? We tested our frame-
work without the information.

• MeSH terms: Did the inclusion of MeSH terms contribute
to classification? We tested our framework without MeSH
terms.

• Unit of extraction: Was a paragraph as a unit of extraction
appropriate? We explored other units:
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– Only the sentence containing the target gene (denoted
asG)

– In addition toG, an immediately succeeding sentence
(denoted asG+S)

– In addition toG+S, an immediately preceding sentence
(denoted asP+G+S)

– The entire article irrespective of the target gene (de-
noted asART)

Note that, however, we did not let bothG+SandP+G+Sex-
ceed paragraph boundaries. Incidentally, our framework fo-
cusing on paragraphs would be placed betweenP+G+Sand
ART.

4.2.2 Empirical observations
Table 2 shows the best possibleF1 scores for each of the experi-

mental settings above, where the training data were classified using
leave-one-out cross-validation, while the test data were classified
using the training data as before. Note that the bottom row “De-
fault” used the same setting as TFCHI2 in Table 1 but shows higher
F1 than TFCHI2, because thresholdtc for kNN was optimized on
thetestdata for the purpose of cross-setting comparison.

Table 2: Results for alternative settings. Numbers in parenthe-
ses under “Average” indicate percent increase/decrease relative
to “Default”.

Experimental settings
F1

Training Test Average

Gene name Exact
0.354 0.411 0.383 (−34.8%)

identification match
Gene name

Unused 0.416 0.470 0.443 (−24.5%)
dictionary
Glossary and

Unused 0.543 0.635 0.589 (+0.3%)
keyword fields
MeSH terms Unused 0.543 0.625 0.584 (−0.5%)

Unit of extraction

G 0.525 0.613 0.569 (−3.1%)
G+S 0.532 0.619 0.576 (−2.0%)

P+G+S 0.535 0.620 0.578 (−1.6%)
ART 0.491 0.620 0.556 (−5.3%)

Default 0.543 0.631 0.587

Gene name identification.Using exact word matching for
gene name identification severely deteriorated the performance on
both of the training and test data sets. This supports our observa-
tion that gene names are often written in slightly different forms
from their canonical ones (database entries). Thus, flexible name
matching schemes such as the one tested here are needed in order to
exhaustively locate gene name occurrences. A possible drawback
of approximate word matching is that it may recognize irrelevant
word sequences as gene names (i.e., false positives), leading to an
inclusion of irrelevant text fragments into the representation of the
target gene. However, the influence can be minimized by tuning
the threshold (and parameters) for the word-overlap score defined
in Equation (1). According to our experiments, a threshold of 0.3
(which was used for our experiments) constantly yielded the best
performance.

Gene name dictionary.Not using the gene name dictionary
also deteriorated classification both on the training and test data
by 24.5% on average. It verifies that gene name expansion using
the dictionary did help to identify text fragments relevant to the

target gene, even though the dictionary was automatically compiled
without manual curation.

Glossary and keyword fields.Contrary to our expectation,
the use of glossary and keyword fields to search for gene synonyms
was not found helpful for GO annotation. There was little or no
difference between theF1 scores produced with and without the
use of the fields. Close examination revealed that these fields hardly
provided information regarding gene synonyms and thus had little
effect on the classification performance. To be exact, there were
only 15 pairs of gene and synonyms found in these fields out of
882 articles in the training and test data sets.

MeSH terms.Similarly to the case of glossary and keyword
fields, theF1 scores show little or no difference between the set-
tings where MeSH terms were used (Default) and unused (MeSH-
unused). However, the difference becomes more apparent when
looking at precision and recall. On the test data, Default and MeSH-
unused yielded nearly equal precision (0.503 and 0.509, respec-
tively), whereas using MeSH terms (Default) achieved a recall ap-
proximately 5% higher than MeSH-unused (0.847 and 0.808, re-
spectively). It suggests that the inclusion of MeSH terms led to pre-
dict more potential classes for a given gene (which raised recall),
but also produced some amount of false positives (which slightly
decreased precision). The lower precision may be due to the fact
that MeSH terms are not gene-specific.

Unit of extraction.Four different units were tested in extract-
ing text fragments. In short, as going fromG (only sentences con-
taining target genes) toART (entire articles) in Table 2, more text
was extracted for document representation. As can be seen, there
is a trend thatF1 slightly increases fromG to P+G+S (sentences
containing target genes plus immediately preceding and succeed-
ing sentences) and then decreases when entire articles were used
(i.e.,ART) compared to Default. However, we should not overlook
that, surprisingly,ART performed comparably to Default on the
test data, suggesting that our framework to use only text fragments
containing target genes is not necessarily very effective. Possible
reasons are that (a) target genes were found everywhere in associ-
ated articles so that almost all paragraphs were extracted, making
little difference whether entire articles or paragraphs were used; (b)
not many articles were associated with multiple genes, and thus
gene-specific document representation (such as ours) was not very
important for the test data; and (c) multiple genes associated with
single articles actually had almost the same classes. We investi-
gated each possibility by comparing the training and test data but
there was no noticeable difference found between them. To closely
examine the effects of using paragraphs, we plotted recall-precision
curves by varying the threshold forkNN (where the same thresh-
olds were applied to all classes) as shown in Figure 3.
The top two curves were obtained on the test data and the bottom
two were based on the training. Although it is less apparent com-
pared to the case of training data, it can be seen that, overall, using
paragraphs (shown as solid lines) marginally improved the perfor-
mance also on the test data.

4.2.3 Contributions of different parts of articles
Our current framework, to some extent, takes into account the

logical structure of input in a sense that it makes use of paragraph
boundaries in extracting text fragments containing target genes.
However, it does not consider or distinguish the structure of an
article, e.g., sections. Such information may be useful for GO an-
notation because different parts of articles may have different im-
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Figure 3: The relation between recall and precision where ei-
ther selected paragraphs or entire articles were used for docu-
ment representation.

portance with respect to GO annotation. For example, result and
conclusion sections may be more relevant to GO annotation as they
usually report findings from experiments. Therefore, we exam-
ined how useful the individual sections were for GO annotation
by using only one section at a time from which gene-bearing para-
graphs were extracted. Specifically, we focused on the following
sections: abstract, introduction, procedures, methods, and results.
Both discussion and conclusion sections were regarded as result
sections since they are sometimes not clearly separated from results
(e.g., “Results and Discussion” section). Incidentally, these sec-
tions were identified based on section names annotated by SGML
tags.

Figure 4 shows a histogram forF1 scores produced using single
sections on the training data, where we include results from the use
of only titles and only MeSH terms for comparison. The rightmost
bar “All” used all the sections including MeSH, which corresponds
to “Default” in Table 2.

Title Abs Intro Proc Method Result MeSH All

Sections
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Figure 4: Results produced by individual sections. “All” used
all the sections. Percentages above bars indicate the respective
proportions to “All”.

Surprisingly, the Result section alone yielded almost as goodF1

as All, followed by Abs (abstract), MeSH, Proc (procedures), and
so on. On the other hand, the Method sections showed the least
performance for GO annotation. Although not presented here, ex-
periments on the test data also showed similar results.

4.3 The triage task

4.3.1 Overview
The framework we described above aimed at GO annotation.

However, it can be also applied to another task from the TREC
Genomics Track, i.e., thetriage task(see Section 1). In brief, the
triage task is to determine if an input article contains experimen-
tal evidence that warrants GO annotation, where no particular gene
is specified. This task can be naturally regarded as a binary text
categorization problem.

In terms of text categorization, a primary difference between GO
annotation tackled in the previous sections and the triage task is
that the former takes a pair of article and gene as input, whereas the
latter takes only an article. As input is not gene-specific, the triage
task could simply rely on an entire article for document represen-
tation without the necessity to locate the text fragments containing
a particular gene. Yet, because the triage decision must be made in
consideration of the genes mentioned in a given article, our frame-
work to use only gene-bearing paragraphs may be more appropri-
ate. Thus, we adapted our system to extract paragraphs that were
likely to containanygene names identified by the gene name rec-
ognizer YAGI [15]. Note that MeSH terms associated with a given
article were also included as features as in GO annotation.

4.3.2 Methods
We used the same methods described in Section 2 for document

representation and classification except the followings:

• For document representation, only paragraphs that were likely
to contain any gene name (determined by YAGI) were used.
Feature selection and term weighting were done in the same
ways as GO annotation.

• For classification, the variant ofkNN classifiers defined in
Equation (6) was used but had only two classes, i.e., positive
(POS) and negative (NEG). If an input article was classified
as POS, it was outputted as positive irrespective of whether
classified as NEG.

4.3.3 Data and evaluation measures
We used the TREC data sets provided for the triage task, which

was composed of 5,837 full text articles for training (375 positives
and 5,462 negatives) and 6,043 for test (420 positives and 5,623
negatives). As is the case with GO annotation, the training data
were used for tuning parameters and were used as pre-labeled in-
stances forkNN to classify the test data. Specifically, the number
of neighborsk and the value of thresholdtPOS were set to 160 and
93.4, respectively, which produced the best result in normalized
utility measure (explained next) on the training data.

For the evaluation measure, normalized utility measureUnorm de-
fined below was used according to the TREC evaluation.

Unorm = Uraw/Umax (8)

where

Uraw = 20× T P− FP

Umax = 20× (T P+ FP)
(9)
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TP and FP denote the number of articles correctly identified as
positive (true positive) and the number of articles falsely identified
as positive (false positive), respectively.

4.3.4 Results and discussions
Table 3 compares our results with the representative results from

the TREC official evaluation, where precision and recall results are
also presented.

Table 3: The TREC official results and our results for the triage
task (on the test data set).

Prec Recall Unorm

Best 0.157 0.888 0.651
TREC Worst 0.200 0.014 0.011

Mean 0.138 0.519 0.330
TFIDF 0.112 0.752 0.455

Ours TFCHI1 0.160 0.883 0.651
TFCHI2 0.137 0.826 0.567

Our framework with the term weighting scheme TFCHI1 com-
pared favorably with the best performing system reported at TREC,
while TFIDF did not perform as well. This is mainly because the
TFIDF scheme could not assign an appropriate (high) weight to the
MeSH term “Mice” since it appeared in many documents (leading
to a low IDF value). It was reported that a simple rule which clas-
sifies articles annotated with the MeSH termMice as positive and
those without it as negative could achieve nearly as good perfor-
mance as the best reported result [1].

Unlike TFIDF, TFCHI considered word distributions across dif-
ferent classes and was able to assign higher weights even to the
terms that appeared in many documents but almost only within a
class, such asMice in this particular data sets. To contrast the dif-
ference between IDF andχ2 values, we plotted a scatter diagram
for corresponding IDF andχ2 as shown in Figure 5, where MeSH
terms are indicated by capitalization.

0 100 200 300 400

0
2

4
6

8

Chi−square statistics

ID
F

Animals

Mice

MiceKnockout

blastocyst

embryon

genotyp
heterozyg

knockout

litterm

Figure 5: A scatter plot for χ2 and IDF.

As can be seen, high-χ2 words, such asMice, Animals, embryon
(the stem for embryonic), andknockout, were not necessarily as-
signed high IDF values. Interestingly, the correlation coefficient for
IDF andχ2 turned out to be−0.13, which is usually strongly and
positively correlated as empirically known in the text categoriza-
tion literature [19]. The result suggests that TFIDF, which is often
used for text categorization, is not necessarily optimum depending

on the characteristics of the target data. This supports the idea of
the supervised term weighting schemes [2] that class-based term
weights (e.g., chi-square statistics) is more appropriate for classifi-
cation.

It may be also possible, however, that our framework with TFCHI1

performed well solely because of the notably high value ofχ2 asso-
ciated with the MeSH termMice (remember that simple heuristics
usingMice could perform very well). To investigate, we applied
the TFCHI1 scheme to hypothetical test data where the MeSH term
Mice was completely removed. The resulting normalized utility
score was 0.548, which outperforms the TFIDF scheme in Table 3
and is still comparable to the second best system [4] (which pro-
duced aUnorm of 0.549) in the TREC evaluation.

5. RELATED WORK
This section discusses representative work by other researchers

for the GO annotation and triage tasks.
For GO annotation, Settles et al. [16] developed a two-tier clas-

sification framework using Naı̈ve Bayes (NB) classifiers and Max-
imum Entropy (ME) models with several external resources and
specialized features. They exploited the structure of articles and
distinguished six section types (such as introduction and discus-
sion) as a unit of classification. They created an NB classifier for
each section and the output probabilities of the NB classifiers were
then combined using ME models which differently weighted each
of the section types and classes. The features used for the NB
classifiers included not only words from body text but also syn-
tactic patterns and what they call informative terms. The syntactic
patterns are frequent patterns for subjects and direct objects (e.g.,
“translation ofX”) automatically collected from training data us-
ing a shallow parser. The informative words were wordn-grams
(1≤n≤3) having high chi-square statistics. To supplement the rela-
tively small size of the training data provided by TREC, they used
external resources including the BioCreAtIvE data set and MED-
LINE abstracts with which specific genes and GO codes were asso-
ciated in existing databases other than MGI. The reportedF1 score
was 0.514, which is 14% lower than our best score reported here.
The difference is presumably due to the fact that their system did
not employ gene name expansion and approximate word matching
which we found highly important for GO annotation.

For the triage task, Dayanik et al. [1] applied Bayesian logistic
regression (BLR) models, which estimate a probability that an in-
put belongs to a specific class. For document representation, they
used MeSH terms from the MEDLINE database in addition to in-
put articles. Their best result was achieved by applying the follow-
ing configuration. They usedonly title, abstract, and MeSH terms
for features and applied the conventional TFIDF term weighting
scheme, and proposed a two-stage classifier which assigned nega-
tive to all articlesnot indexed with the MeSH termMice and classi-
fied those indexed withMice by using BLR. The reported normal-
ized utility score is 0.641. In spite of using TFIDF, which yielded
suboptimal results in our experiments, their method outperformed
other TREC participants.

6. SUMMARY AND FUTURE RESEARCH
This paper presented our work on automating GO domain code

annotation. We approached this task by treating it as a text cate-
gorization problem and adopted a variant ofkNN classifiers. To
apply kNN, we first represented each input,〈article, gene〉 pair,
by a term vector, where terms were collected from text fragments
(paragraphs) containing the target gene. To exhaustively locate the
gene name occurrences, we took advantage of existing databases to

144



automatically compile a gene name synonym dictionary and pre-
processed both gene names and text to tolerate minor differences
between them. In addition, we utilized approximate word match-
ing to identify gene occurrences to deal with other irregular forms
of the gene names. The collected words were then fed to feature
selection using chi-square statistics, which were re-used for term
weights adopting supervised term weighting schemes. We evalu-
ated the proposed framework on the TREC Genomics Track data
sets and showed that, overall, our method performed the best com-
pared with the TREC official evaluation. Further analyses revealed
that the flexible gene name matching used in conjunction with the
gene name dictionary was notably effective. Another finding is that
the result sections of articles contributed the most for GO annota-
tion. It was also demonstrated that our framework was successfully
applied to a related but different problem, the triage task, producing
a normalized utility score of 0.651 which is comparable to the best
reported performance at the recently held TREC. In addition, the
TFIDF scheme was found suboptimal for this particular task and
data sets.

For future research, we are planning to explore a better use of
structure of articles (e.g., sections) and local context around the
target genes. Such information may be incorporated into the current
framework by way of term weights. Another direction is to extend
our work to more advanced, realistic settings. For example, in the
real-world GO annotation, genes are not given in advance. Taking
only articles as input without specific genes would be an interesting
challenge.
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