研究の背景と目的

磁気センサシステム NDI Wave Speech Research system
- 調音運動のリアルタイム計測が可能
- 非侵襲性、低騒音、装置の可搬性などの利点有り

センサのワイヤを交換
- 純正センサのワイヤは太くて硬く、発話を阻害する可能性有り
- 細く柔軟なワイヤに交換 (Kitamura et al., 2015)
- 精度に課題残る (北村ら, 2015.03)

目的：センサを再度改良した上で、その精度を評価し、さらに発話への影響を調査する

センサの改良

- センサのワイヤを細く、柔軟性の高い物に交換
- ワイヤの「より」を増やし、耐ノイズ性を向上させた

精度評価

- 装置：LEGO Mindstormsで作成したクランク-ロッカー
 - ロッカー先端に純正、改良センサを3個ずつ固定
 - センサは無作為に選択

- 条件
 - ロッカーの往復数とFGが水平になるよう固定
 - センサ位置計測の標準化周波数：400 Hz
 - 磁場領域のサイズ：300x300x300 mm³
 - ロッカーの最大速度：静止、91 mm/s、470 mm/s、1,123 mm/s
 - FG-センサ間距離：100 mm、200 mm、300 mm
 - 10秒間のデータを分析

結果

- 平均値の変動は、純正、改良センサでほぼ同じ
- 標準偏差は改良センサの方が小さい
- FGから300 mmの位置では精度低下

改良センサの精度は純正センサと同等
発話への影響

方法

- 実験参加者: 60代の男女各2名 (参加者1, 2, 3, 4)
- 発話資料
 - 日本語5母音系列 (/aiueo/)
 - VCV系列「日本語5母音 + サ行、タ行、ラ行の音節」(例: アサ)
 文章
- 実験手続き
 - 参加者1, 4 : 改良→純正の順でセンサを装着
 - 参加者2, 3 : 純正→改良の順でセンサを装着
 - 計測: ①センサ装着直後, ②1回目の計測後10分後

評定

- 音声は振幅を正規化
- 言語聴覚士 (ST) 3名が評定 (母音系列とVCV系列)
 - 発話内容の書き取り
 - 歪みの程度の7段階評定
 - 歪みのある音節の回答

結果

2要因分散分析を実施 (p < .05)
- 要因: センサと計測タイミング
- 交互作用無し
- センサ間に有意差あり (F値=14.57, p < .001)
- 計測タイミング間には有意差無し (F値=0.00, p = .98)

まとめ

- 改良センサは純正センサよりも発話への影響が小さい

謝辞 本研究の一部は、平成27年度科研費基盤研究 (24652085, 25280026, 25280066) の支援を受けて行われた。実験にご協力いただきました言語聴覚士の皆様に感謝します。