

ソプラノ歌手の歌唱時の 前額振動計測

北村達也 甲南大学知能情報学部 t-kitamu@konan-u.ac.jp

- ◆ 予稿でのデシベルの平均の取り方が間 違っておりました.
- ◆実験参加者には裏声を出している意識がなかったため、この発表では地声、 裏声という用語を用いません。
 - これにともない音高の表記法も変更します

研究の背景と目的

- ◆ 発声中は皮膚も振動している
- ✤ Miller (2004)「スペクトルのバランス が完全であれば、歌い手の<u>頭部の骨格</u> に共振の感覚が生まれます」
- ◆ 頭声:頭に響く感覚
- ✤ 歌唱に伴う骨格の振動に起因?
- ◆この振動を捉えることができないか?
- ◆ レーザードップラ振動計による計測

先行研究の測定法

* Kirikae et al. (1964)

• 骨伝導のトランスデューサー [接触]

Pawluczyk & Kraska (1985)

- レーザー [非接触]
- ◆ 鈴木ら (1991)
 - 加速度ピックアップ [接触]
- Toyoda & Fujinami (2008)
 - ・光ファイバーセンサー [接触]

Pawluczyk & Kraska (1985)

スキャニングレーザドップラ 振動計を用いた皮膚振動計測

- Kitamura (2012)
 - ・母音/a/と鼻音/N/の皮膚振動の差異
- Kitamura et al. (2013)
 - 声楽家歌唱時の皮膚振動計測
- ◆北村 (2014)
 - 計測の再現性の調査

Vowel /a/

Nasal /N/

方法(1/7) 振動計

- Polytec PSV-500
- ◆ レーザドップラ振動計:ドップラ効果に基づいて振動 を計測
- ◆ クラス2のレーザを使用
- ◆ 周波数ごとの測定が可能
- ◆ スキャニング型:複数の点を自動的に移動しながら計測

方法(2/7) 実験参加者

◆ プロのソプラノ歌手3名(歌手A, B, C)

- 20代, 30代, 40代
- 母語:日本語
- ◆ 仰臥位でも十分に歌唱できる声楽家

方法(3/7) 実験課題

- ◆ 仰臥位にてできる だけ頭を動かさず に歌う
- ◆ 日本語母音/a/, /i/
- ◆ 音高:4段階
 - 胸声区, 頭声区
- ◆ 大きさ: 歌いやす い大きさ

各実験参加者の歌唱時の音高

		音高
歌手A	pf1	A3 (220 Hz)
	pf2	F5 (698 Hz)
	pf3	G5 (784 Hz)
	pf4	A5 (880 Hz)
歌手B	pf1	C4 (261 Hz)
	pf2	F5 (698 Hz)
	pf3	G5 (784 Hz)
	pf4	A5 (880 Hz)
歌声C	pf1	A3 (220 Hz)
	pf2	F5 (698 Hz)
	pf3	A5 (880 Hz)
	pf4	C6 (1047 Hz)

方法(4/7) 手続き

- ◆ 準備体操や発声練習の後, マット上で仰臥位に
- ◆ 不織布製帽子
- ◆ レーザ保護用ゴーグル
- ◆ 首の下にタオルを置くなどして頭を固定
- ◆ スキャニングヘッドは下向きに固定 (顔からの距離: 約45 cm)

方法(5/7) 計測点

◆ 前額上の10点 ◆ 矢状面:25 mm間隔 ◆ 事前にマーカーを 貼り,それを目印 に決定

 ◆ 上下方向:実験参 加者ごとに決定

本研究における計測点

方法(6/7) 計測

- ◆標本化周波数: 7,813 Hz
- ◆ カットオフ周波数 10 HzのHPF
- ◆ 歌声でトリガ
- ◆ 適切に計測できなかった場合には自動的 に再計測
- ◆ 1点の計測に要する時間:256 ms
 - 10点計測:6 s~10 s 程度
- ◆ 騒音計で等価騒音レベルを計測
- ◆ 甲南大学の倫理審査により承認済み

方法(7/7) 分析方法

- ◆ 歌声の基本周波数を中心として50 Hz の帯域の成分を抽出
 - Kirikae et al. (1964) にならって
- ✤ RMS値を計測点ごとに平均

結果(1) LAeq

おおむね基本周波数と 正の相関

(左) 母音/a/, (右) 母音/i/の歌声の等価騒音 レベルの平均値

結果(2) 皮膚振動速度(歌手A)

結果(3) 皮膚振動速度(歌手B)

結果(4) 皮膚振動速度(歌手C)

16

結果(5) 皮膚振動速度の平均値

- 基本周波数との相関は ない
- LAeqとの相関もない
- 母音間の差異が大きい
- 頭声区の値が大きい

(左) 母音/a/, (右) 母音/i/の皮膚振動速度の 平均値 (10点の平均値)

結果(6) 上下の差異

上段6点の平均値から下段4点の平均値を減 じた値.(左)母音/a/,(右)母音/i/

18

結果のまとめと考察(1/2)

- ◆ 皮膚振動速度は計測位置や基本周波数によって異なる
 - 発声中の変動による影響の可能性あり
- ◆ 基本周波数との相関はない
- ◆ 母音/i/の方が母音/a/より大きい
 - Kirikae et al. (1964) の報告ほど大きくはない
 - 母音/i/発話時の口腔内圧変動が高いことが原因か
- ◆ 頭声区の方が胸声区より大きいが、その差は 実験参加者により異なる
- ◆ 本人の振動・響きの感覚との相関はない

結果のまとめと考察(2/2)

- ◆ 皮膚振動速度と歌声の大きさ(LAeq)との相関 はない
- ◆ 前額上部よりも下部の振動速度が大きいケー スが多い
 - 前頭洞の影響か?
 - 胸声区では上下の差が小さい
 - 振動感覚があった歌手Bの頭声区では下部が大きい
- ◆ 今回の結果は、長期間に渡って安定して現れる特性ではない
 - 被験者の負担とのトレードオフ

21

まとめ

◆ プロのソプラノ歌手を対象に歌唱時の 前額の振動速度を計測

- スキャニングレーザドップラ振動計
- ◆ 歌声の基本周波数、大きさ、母音、声 区などとの明確な関連は見られず
 - 個人差が大きい?
 - ・歌声による振動は歌手間で一様ではない(Miller, 2011)
 - ・ 測定法の問題?

謝辞:本研究は,2014年度科研費挑戦的萌芽(24650088)の支援により行われた. 副鼻腔の図は竹本浩典さん(NICT)にご提供いただきました.