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Abstract. This paper proposes an approach to automating Gene Ontol-
ogy (GO) annotation in the framework of hierarchical classification that
uses known, already annotated functions of the orthologs of a given gene.
The proposed approach exploits such known functions as constraints and
dynamically builds classifiers based on the training data available under
the constraints. In addition, two unsupervised approaches are applied to
complement the classification framework. The validity and effectiveness
of the proposed approach are empirically demonstrated.
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1 Introduction

Since the completion of the Human Genome Project, a large number of studies
have been conducted to identify the roles of individual genes, which would help
us understand critical mechanisms of human bodies, such as aging and disorders.
The active research in the domain has been producing numerous publications.
Although they are rich intellectual resources, it is extremely labor-intensive to
collect all the information relevant to a given user information need, such as
“a list of functions of gene X” or “a list of genes having function Y ”, since
such information can be only accessed by extensive reading. To remedy the
problem, numbers of organizations have been working to annotate each gene
of model organisms with controlled vocabularies, called Gene Ontology (GO)
terms, based on the contents of published scientific articles. GO is defined as
a directed acyclic graph (DAG), and organized under three top level nodes:
molecular function (MF), cellular component (CC), and biological process (BP).
Currently, there are nearly 30,000 GO terms in total.

The effort of GO annotation has enabled uniform access to different model
organism databases, including FlyBase, Mouse Genome Database (MGD), and
Saccharomyces Genome Database, by the common vocabularies. However, the
annotation requires trained human experts with extensive domain knowledge.
With limited human resources and the ever-growing literature, it was reported
that it would never be completed at the current rate of production [1].

Motivated by the background, this study proposes an approach to automatic
GO annotation, which exploits the structure of GO and applies hierarchical
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classification. In addition, we take advantage of orthologous genes and use their
known gene functions as constraints to enable efficient learning. Moreover, we
apply string matching-based and information retrieval model-based approaches
to deal with the case where sufficient training data are not available.

2 Related Work

Due to the large number of genes, gene functions, and scientific articles, manual
GO annotation is inevitably labor-intensive. In addition, because of the highly
specialized contents, it requires skilled professionals with expertise in the domain.
To alleviate the burden, TREC 2004 Genomics Track [2] and BioCreative [3]
targeted automatic GO domain/term annotation.

The Genomics Track attempted to automate the process of assigning the
first level of GO (i.e., MF, CC, BP), called “GO domains”. The participants of
the workshop were given a mouse gene and an article in which the gene appears
and were expected to annotate zero to three GO domains with the gene based
on the contents of the article. For this task, Seki and Mostafa [4] developed
an approach featuring flexible gene mention extraction techniques based on a
synonym dictionary and approximate name match. They used gene-centered
representation by extracting fragments of an article mentioning the target gene
and applied k nearest neighbor (kNN) classifiers with supervised term weighting.

In contrast to the Genomics Track only targeting GO domains, BioCreative
aimed at assigning specific GO terms to human genes. Among others, Ray and
Craven [5] looked at the occurrences of GO terms and their related terms to
assign GO terms. Stoica and Hearst [6] took advantage of orthologs of a given
gene and considered the GO terms already associated with them as candidates.
Orthologs are genes in different species rooted from the same gene of their com-
mon ancestor and often have the same functions. Stoica and Hearst associated
a given human gene with its mouse ortholog, and if the majority of terms con-
sisting of each GO term assigned to the ortholog appeared in a given article,
they assigned the GO term to the human gene. In addition, they used GO term
co-annotation to prevent false positives. Their idea was based on the observa-
tion that there were cases where some GO terms were not usually co-annotated
together to the same gene because annotating them together was illogical. For
instance, “transcription (GO:0006350)” and “extracellular (GO:0005576)” are
not likely to be co-annotated as transcription cannot happen outside of a cell.

Comparing the approaches taken at the Genomics Track and BioCreative,
the participants for the former reported the effectiveness of supervised classifi-
cation techniques. On the other hand, those for the latter mainly adopted string
matching-based approaches. Such different strategies attributed to the fact that
the former considers only three categories (i.e., GO domains), whereas the latter
takes account of nearly 30,000 GO terms; dealing with less and general classes
is more suitable for text categorization in terms of available training data and
overfitting.
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This study takes a classification approach to GO annotation by leveraging a
limited amount of training data, where the GO structure and orthologous genes
are used for guiding efficient classification. In addition, we complementarily use
other unsupervised approaches when there is only insufficient training data so
as to boost the coverage of GO annotation.

3 Proposed Approach

3.1 Overview

Our approach assigns appropriate GO terms for a given pair of gene g and an
article d based on a set of text fragments mentioning g extracted from d. If
there are multiple functions of g reported in d, we assign multiple GO terms
corresponding to them. Roughly, our approach consists of the following steps:
1) Assign GO domains, 2) Obtain GO terms already assigned to the ortholog
of the given gene g, 3) Assign GO terms by hierarchical classification, 4) Assign
GO terms based on unsupervised approaches. Each step is described below.

3.2 Assigning GO domains

For GO domain annotation, we follow the approach proposed by Seki and Mostafa
[4] who have reported the best performance in the literature. Simply put, for a
given pair of gene g and article d, they first extract paragraphs mentioning g.
Then, from the set of extracted paragraphs, a term vector is constructed to rep-
resent the input pair 〈d, g〉. Based on the representation, they assign GO domains
by a variant of kNN.

3.3 Obtaining GO terms annotated with orthologs

After assigning GO domains, we identify promising GO term candidates in order
to enable both effective and efficient GO term annotation. This study adapts
the approach by Stoica and Hearst [6] using orthologs; That is, we consider
only GO terms already assigned to the ortholog g′ of a given gene g as GO
term candidates. By this constraint, we can drastically reduce the number of
GO terms to be considered from around 30,000 to only dozens at most. For
instance, a mouse gene Sox21 has an ortholog in human genome, called SOX21,
and the human gene has been already annotated with GO terms, including “RNA
polymerase II transcription factor activity (GO:0003702)” and “establishment
or maintenance of chromatin architecture (GO:0006325)”, where the numbers
in the parentheses are corresponding GO codes. Because these two genes are
orthologous and are likely to have the same functions, we can expect higher
precision by focusing only on these GO terms. Of course, it is also possible that
true GO terms are not found in these GO term candidates. We will empirically
investigate how often such cases occur in Section 4.2.

For the sources of the information regarding orthologs and their known gene
functions (GO terms), this study uses two existing databases, MGD and Gene
Ontology Annotation (GOA).
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3.4 GO term annotation by dynamic hierarchical classification

Using the GO term candidates obtained through the ortholog of the given gene,
we then assign specific GO terms by taking advantage of the structure of GO.
For the above-mentioned example of Sox21, we consider only the GO terms
already annotated with its ortholog as possible classes and train classifiers for
them. However, as the number of the training instances with the classes (i.e., the
GO terms) is often limited as discussed in Section 2, we enhance the training
data set based on the GO structure. That is, for the candidate GO terms, we
first identify their least common ancestor (LCA) and then train classifiers for
the GO terms immediately under the LCA, where we consider only GO terms
which have any candidates as descendants. For training data, we use not only
the instances having the exact GO terms immediately under the LCA but also
those having more specific GO terms under them. This way, one can use more
training data and diminish the influence of the overfitting problem. Although
this approach is similar to the hierarchical classification approach by McCallum
et al. [7], a difference is that this study does not take into account all the classes
in a given structure but only the limited number of the GO terms associated
with a given gene through its ortholog. Also, training instances are dynamically
harvested at each step of classification based on the GO term candidates, so as
to learn classifiers on the fly.

A more precise algorithm of our dynamic hierarchical classification for GO
term annotation is presented in Fig. 1, where the input is a test instance b, a
set of training instances T , a set of GO term candidates C, and a set of GO
domains assigned as described in Section 3.2; and the output is a set of GO
terms F with which b is annotated. For each GO domain s, we identify GO
term candidates Cs in the GO domain. If the number of the candidates |Cs|
equals 1, we unconditionally add the sole GO term candidate to the output F
considering the fact that the GO domain s is already assigned and the GO term
candidate is the only possible one to assign in the domain s. If |Cs| is greater
than 1, the following steps are carried out. First, we identify a set of GO terms
C ′

s immediately under the LCA and then, for each GO term in C ′
s, we collect all

the instances having GO terms under it. If the number of training instances for
every GO term in C ′

s is greater than a predefined threshold τ , we train classifier
F and set per-class thresholds Θ = θ1, . . . , θ|C′

s| to maximize F1 score for each
class c′

i ∈ C ′
s using the training instances. If classifier’s output pi for c′

i exceeds
the threshold θi, c′

i is added to F in the case where c′
i is one of the GO term

candidates, or we recursively apply the same procedure using c′
i as if it were a

GO domain. If the number of training instances is below the threshold τ for any
c′
i, we resort to the unsupervised approaches to avoid the overfitting problem as

described next.

3.5 Unsupervised approaches to GO term annotation

In order to deal with the classes with insufficient training data (less than thresh-
old τ), we make use of a string matching-based approach and an approach using
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1 Input: test instance b, set of training instances T , set of GO term candidates
C, set of predicted GO domains D;

2 Output: set of predicted GO terms F for b;
3 Variables: set of GO terms/domains S, prediction pi ∈ R for a GO term c′

i,
threshold τ for training data size;

4 S = D
5 while S is not empty do
6 Take any GO term/domain out from S and set it to s
7 Cs = {c | c ∈ C under s}
8 if |Cs| = 1 then add Cs to F
9 else if |Cs| > 1 then

10 C′
s = {c′ |GO terms immediately below s}

11 for each c′ ∈ C′
s do

12 Tc′ = {t | t ∈ T assigned any GO term under c′}
13 if ∀c′, |T ′

c| > τ then
14 Build a classifier F 7→ (p1, . . . , p|C′

s|)
15 Determine per-class thresholds Θ = θ1, . . . , θ|C′

s|
16 for each c′

i ∈ C′
s do

17 if pi (predicted by F for b) > θi then
18 if c′

i ∈ Cs then add c′
i to F

19 else add c′
i to S

Fig. 1. Dynamic hierarchical GO term annotation algorithm.

an information retrieval model. These approaches were adapted from the related
work in BioCreative and others.

String matching-based approach. Since GO terms are concise descriptions of
gene functions in natural language, if a text contains a certain GO term, the
text may be describing the corresponding gene function. This is not necessarily
the case for general GO terms located at the higher level of the GO tree, such as
“behaviour (GO:0007610)”, but is likely to apply to more specific ones, such as
“regulation of transcription from RNA polymerase II promoter (GO:0006357)”.
In this study, we use the edit distance to deal with some writing variations and
differences. The edit distance basically counts the number of edit operations (i.e.,
insert, delete, and substitution) to convert a string (i.e., GO term) to another
string (i.e., actual expression found in text). Also, to consider the different im-
portance of words, we define different penalty costs for different words based on
document frequencies (DF). We define the DF of a word w as the logarithm of
the total number of GO terms containing w.

Information retrieval model-based approach. Another unsupervised approach
has been proposed by Ruch [8]. We take a similar approach as him and assign
GO terms based on a vector space model. Simply put, this approach measures
the cosine similarity between a GO term and text and assigns the GO term
if the similarity between them exceeds a predefined threshold. Essentially, this
approach is similar to the string matching-based approach above except that
this approach is less restrictive, not considering word orders.
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4 Evaluation

4.1 Experimental settings

For evaluation, we use the data set provided for the TREC 2004 Genomics Track
supplemented by GO term information. The data set consists of 849 training
instances and 604 test instances, where each instance is a triplet of an article d
represented by PubMed ID, a gene g mentioned in d, and a GO term f which
is reported in d as a function of g. This data set is a subset of MGD, and thus,
only dealing with mouse genes.

As an evaluation metric, we use F1 score for direct comparison with the
previous work, i.e., Genomics Track and BioCreative which used the same metric.
F1 is defined as a harmonic mean of recall (R) and precision (P ). P is defined as
the number of correct GO terms assigned divided by the number of GO terms
assigned, and R is the number of correct GO terms assigned divided by the
number of GO terms in the test data.

The proposed GO term annotation framework is general and by design does
not depend on a particular classifier. Although the following experiments used
kNN as it has been shown effective in the related work [4], it can be easily
replaced with other classifiers.

4.2 Validity of the use of orthologs for GO annotation

As orthologs, we experimentally chose human and rat genes to annotate mouse
genes. Our first experiment examined the validity of the use of those orthologs
for GO term annotation. To be precise, we simply annotated input mouse genes
with all the GO term candidates obtained from their orthologs without classifica-
tion. This experiment reveals the coverage of the GO term candidates obtained
through different species.

When comparing two species, human and rat, the latter works better for all
of recall (0.800), precision (0.045), and F1 (0.086). This is expected, as rat is
genetically closer to mouse than human. Using rat genes, the recall was found
0.800, which means that 80.0% of true GO terms annotated to the test data are
found in the GO terms already assigned to the rat orthologs. Differently put,
this is the upper bound of recall for our framework to look only at GO term
candidates obtained from orthologs. In this study, we focus on the 80.0% and
recovering the remaining 20.0% are left for the future work.

4.3 GO term annotation by hierarchical classification

Table 1 shows the results for GO term annotation when our proposed approach
(denoted as “Hierarchical”) based on hierarchical classification was applied,
where we used only rat genes as orthologs based on the observation in Sec-
tion 4.2. In addition, the table shows for reference the results reported by Stoica
and Hearst [6] and Chiang and Yu [9] on the BioCreative data set. Also, the re-
sults for standard flat classification without considering GO structure is included
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Table 1. Comparison of the performance of GO term annotation.

Approaches Precision Recall F1

Stoica & Hearst [6] 0.168 0.121 0.140
Chiang & Yu [9] 0.332 0.051 0.089
Hierarchical (proposed approach) 0.248 0.210 0.227
Flat 0.041 0.551 0.075

Table 2. Results of GO annotation when hierarchical classification and unsupervised
approaches are combined.

Approaches Precision Recall F1

Hierarchical 0.248 0.210 0.227
Hierarchical + Edit 0.238 0.245 0.242
Hierarchical + IR 0.256 0.275 0.265
Hierarchical + Edit + IR 0.236 0.282 0.257

(denoted as “Flat”). Note that “Flat” also looked at only GO term candidates
obtained from orthologs and thus can be used to evaluate the effect of the use
of the GO structure.

Comparing with the results by Stoica and Hearst [6] and Chiang and Yu [9],
our proposed approach obtained the best performance in F1. This result indicates
that, if we can restrict the number of GO terms to be considered, supervised
classification approaches can be effective even for GO term annotation for which
a large number of classes otherwise exist. In addition, we can observe that the flat
classification produced poor performance, which means that it is not sufficient
only to restrict the number of possible classes.

4.4 GO term annotation by unsupervised approaches

In general, classification performance in precision improves up to some point as
the training data size increases. However, because the GO terms with a large
number of instances are limited, recall inevitably decreases with higher τ , the
threshold for the number of instances. To improve recall, we apply two unsu-
pervised approaches described in Section 3.5 when there are insufficient training
data (less than τ). The results are shown in Table 2, where “Hierarchical” is the
result by hierarchical classification taken from Table 1, “Edit” and “IR” denote
approaches based on string matching and the IR model, respectively.

When Hierarchical is combined with one of Edit and IR, recall improved
to 0.245 (+16.7%) and 0.275 (+31.0%), respectively. This result confirms the
effectiveness of the unsupervised approaches and indicates that they work com-
plementarily with our hierarchical classification approach. Especially, the IR
approach resulted in a significant boost in recall and even improved precision
as compared with Hierarchical alone. In addition, when both Edit and IR are
combined with Hierarchical, recall further improved to 0.282 (+34.3%), which,
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however, decreased precision. (It is attributed to the different value of τ used,
which was chosen to maximize F1 for each configuration.) Focusing on F1, Hier-
archical+IR was the best combination achieving an F1 of 0.265. For comparison,
when only IR without classification was applied for GO term annotation, F1 was
found to be around 0.150 (not shown in the table). This result also confirms that
combining classification and unsupervised approaches is effective for GO term
annotation.

5 Conclusions

This study proposed an approach to GO term annotation using orthologs to
effectively guide hierarchical classification. In addition, two unsupervised ap-
proaches were applied when sufficient training data were not available. From the
experiments on the Genomics Track data, we observed that 1) by using rat genes
as orthologs, up to 80% of correct GO terms can be annotated; 2) using the GO
term candidates obtained from orthologs, our hierarchical classifiers were able
to annotate mouse genes at an F1 of 0.227; and 3) by combining the hierarchical
classification and the IR model-based approach, the performance improved up
to 0.265. For future work, we aim to recover the remaining 20% of true GO
terms not covered by the ortholog-based framework. This could be partly done
by exploiting other homologs, e.g., paralogous and xenologous genes.
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