
Discovering Implicit Associations among Critical

Biological Entities

Kazuhiro Seki

Graduate School of Science and Technology

Kobe University

11 Rokkodai, Nada, Kobe 6578501, Japan

Email: seki@cs.kobeu.ac.jp

Tel: +81788036480

Fax: +81788036316

Javed Mostafa

Laboratory of Applied Informatics Research

University of North Carolina at Chapel Hill

216 Lenoir Dr., CB#3360, 100 Manning Hall, Chapel Hill, NC 275993360, USA

Email: jm@unc.edu

Tel: +19199622182

Abstracts: We propose an approach to predicting implicit gene-disease associa-

tions based on the inference network, whereby genes and diseases are represented

as nodes and are connected via two types of intermediate nodes: gene functions

and phenotypes. To estimate the probabilities involved in the model, two learn-

ing schemes are compared; one baseline using co-annotations of keywords and the

other taking advantage of free text. Additionally, we explore the use of domain

ontologies to complement data sparseness and examine the impact of full text doc-

uments. The validity of the proposed framework is demonstrated on the benchmark

data set created from real-world data.
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1 Introduction

Ever-growing textual data make it increasingly difficult to effectively utilize all the

information relevant to our interests. For example, MEDLINE—the most compre-

hensive bibliographic database in life science—currently indexes approximately

5,000 peer-reviewed journals and contains over 17 million articles. The number

of articles is increasing rapidly by 1,500–3,000 per a day. Given the substantial

volume of the publications, it is crucial to develop/advance intelligent information

processing techniques, such as information retrieval (IR), information extraction

(IE), and text data mining (TDM), that could help us manage the information over-

load.

In contrast to IR and IE, which deal with information explicitly stated in doc-

uments, TDM aims to discover heretofore unknown knowledge through an auto-

matic analysis on textual data (Hearst, 1999). The pioneering work in TDM (or

literature-based discovery) was conducted by Swanson in the 1980’s. He argued

that there were two premises logically connected but the connection had been un-

noticed due to overwhelming publications and/or over-specialization. For instance,

given two premises A→B and B→C, one could deduce a possible relationA→C.

To demonstrate the validity of the idea, he manually analyzed numbers of articles

and identified logical connections implying a hypothesis that fish oil was effective

for clinical treatment of Raynaud’s disease (Swanson, 1986). The hypothesis was

later supported by experimental evidence (DiGiacomo et al., 1989).

Based on his original work, Swanson and other researchers have developed

computer programs to aid hypothesis discovery (Gordon and Lindsay, 1996; Srini-

vasan, 2004; Swanson and Smalheiser, 1997; Weeber et al., 2001). Despite the

prolonged efforts, however, the research in literature-based discovery can be seen

to be at an early stage of development in terms of the approaches, models, and

evaluation methodologies. For instance, most of the previous work was largely

heuristic without a formal model and their evaluation was limited only on a small

number of hypotheses that Swanson and his colleague had proposed (e.g., Swan-
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son, 1988; Smalheiser and Swanson, 1996).

This study is also motivated by Swanson’s and attempts to advance the research

in literature-based discovery. Specifically, we will examine the effectiveness of the

models and techniques developed for IR, the benefit of free- and full-text data,

and the use of domain ontologies for more robust system predictions. Focusing

on associations between genes and hereditary diseases, we develop a discovery

framework adapting the inference network model (Turtle and Croft, 1991) in IR

and conduct various evaluative experiments on a realistic benchmark data set.

2 Scope of this Study

Among many types of information that are of potential interest to biomedical re-

searchers, this study targets associations between genes and hereditary diseases as

a test bed. Gene-disease associations are the links between genetic variants and

diseases to which the genetic variants influence the susceptibility. For example,

BRCA1 is a human gene encoding a protein that suppresses tumor formation. A

mutation of this gene increases a risk of breast cancer. Identification of this kind

of genetic associations has tremendous importance for prevention, prediction, and

treatment of hereditary diseases. In this context, predicting or ranking candidate

genes for a given disease is crucial to select more plausible ones to speed up genetic

association studies.

In developing a framework to discover implicit gene-disease associations, we

assume a disease name and known causative genes, if any, as system input. In

addition, a target region in the human genome may be specified to limit the search

space. Given such input, the system attempts to predict a (unknown) causative gene

by way of producing a ranked list of candidate genes.
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Figure 1: Inference network modeling gene-disease associations.

3 Proposed Approach

Focusing on gene-disease associations, we explored the use of a formal IR model,

specifically, the inference network (Turtle and Croft, 1991) for this related but dif-

ferent problem targeting implicit associations. The following details the proposed

model and how to estimate the probabilistic parameters involved in the model.

3.1 Inference Network for Gene-Disease Associations

In the original IR model, a user query and documents are represented as nodes in a

network and are connected via intermediate nodes representing keywords that com-

pose the query and documents. To adapt the IR model to represent gene-disease

associations, we treat a disease as a query and genes as documents and use two

types of intermediate nodes: gene functions and phenotypes which characterize

genes and disease, respectively (Fig. 1). An advantage of using this particular IR

model is that it is essentially capable of incorporating multiple intermediate nodes.

Other popular IR models, such as the vector space models (Salton and McGill,

1983), are not readily applicable as they are not designed to have different sets of

concepts (intermediate nodes) to represent documents and queries.

The network in Fig. 1 consists of four types of nodes: genes (g), gene functions
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( f ) represented by Gene Ontology (GO) terms,1 phenotypes (p) represented by

MeSH terms under the C category (hereafter referred to as MeSH C terms for

short),2 and disease (d). Each gene node g represents a gene and corresponds to the

event that the gene is found in search for the causative genes underlying d. Each

gene function node f represents a function of gene products. There are directed

arcs from genes to functions, representing that instantiating a gene increases the

belief in its functions. Likewise, each phenotype node p represents a phenotype

of d and corresponds to the event that the phenotype is observed. The belief in

p is dependent on the belief in f ’s since phenotypes are (partly) determined by

gene functions. Finally, observing certain phenotypes increases the belief in d.

As described in the followings, the associations between genes and gene functions

(g→ f ) are obtained from an existing database, Entrez Gene,3 whereas both the

associations between gene functions and phenotypes ( f → p) and the associations

between phenotypes and disease (p→d) are derived from the biomedical literature.

Given the inference network model, causative gene set G for given disease d

can be predicted by the probability:

P(G|d) =
P(d|G) × P(G)

P(d)
(1)

where the denominator can be dropped as it is constant for given d. In addition, as-

suming that P(G) is uniform, P(G|d) can be approximated to P(d|G) below defined

as the sum of the probabilities associated with all the paths from G to d.

P(d|G) =
∑

i

∑

j

P(d|~pi) × P(~pi|~f j) × P(~f j|G) (2)

Eq. (2) quantifies how much a set of candidate genes, G, increases the belief in

the development of disease d, where ~pi (or ~f j) is defined as a vector of random

variables with i-th (or j-th) element being positive (1) and all others negative (0).

By applying Bayes’ theorem and some independence assumptions, we derive the

1http://www.geneontology.org
2http://www.nlm.nih.gov/mesh
3http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gene
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following (see Appendix A for more complete derivation):

P(d|G) ∝
∑

i

∑

j

(

P(pi|d)

P(p̄i|d)
×

P( f j|pi)P( f̄ j|p̄i)

P( f̄ j|pi)P( f j|p̄i)
× F(pi) × F( f j) × P( f j|G)

)

(3)

where p and p̄ ( f and f̄ ) are used as the shorthand of p = 1 and p = 0 ( f = 1 and

f = 0), respectively, and

F(pi) =

m
∏

h=1

P( f̄h|pi)

P( f̄h|p̄i)
, F( f j) =

n
∏

k=1

P( f̄ j)P( f j|p̄k)

P( f j)P( f̄ j|p̄k)
. (4)

Note that since p is a binary random variable taking either 0 or 1, P(p̄|d) equals to

1 − P(p|d). Similarly, P( f̄ |p) is computed as 1 − P( f |p), and P( f̄ |p̄) as 1 − P( f |p̄).

The first factor of the right-hand side of Eq. (3) represents the interaction between

disease d and phenotype pi, and the second factor represents the interaction be-

tween pi and gene function f j, which is equivalent to the odds ratio of P( f j|pi) and

P( f j|p̄i). The third and fourth factors are functions of pi and f j, respectively, rep-

resenting their main effects. The last factor takes either 0 or 1, indicating whether

f j is a function of any gene in G under consideration.

3.2 Limitations of the Proposed Model

The inference network described in Section 3.1 assumes independence among phe-

notypes, among gene functions, and among genes. We assert that, however, the

effects of such associations are minimal in the proposed model. Although there

may be strong associations, for example, among phenotypes, such as “phenotype

x is often observed with phenotype y,” our proposed model does not intend to cap-

ture those associations. In other words, phenotypes are attributes of the disease in

question and we only need to know those that are frequently observed with disease

d so as to characterize disease d. The same applies to gene functions; they are only

attributes of the genes to be examined and are simply used as features to represent

the genes under consideration in our proposed model.

Next, Eq. (2) introduces ~pi and ~f j in which only one element of the vectors

is positive. While this approximation allows us to assess only the effect of each
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factor, pi and f j, in isolation from other factors (Baeza-Yates and Ribeiro-Neto,

1999, p. 55), it does not consider the case where strong many-to-one relations exist

(e.g., both phenotypes x and y must be observed when disease d is developed). It

should be mentioned that, however, even though using only one-to-one relations

cannot precisely describe such cases, it could still capture desired relations to a

degree because each one-to-one relation would increase the belief in the outcome.

For example, if observing phenotype x suggests the development of disease d to

some extent and so does observing phenotype y, then it would be more likely to

have disease d when observing both x and y than observing only one.

Another limitation is the assumption regarding the uniformity of the probability

P(G) since there would be more likely set of genes G that are positive (activated)

together. To obtain better estimates for P(G) rather than assuming the uniform dis-

tribution, we plan to study the use of known (or predicted) gene-gene interactions

(Franke et al., 2006, for example) in future work.

3.3 Probability Estimation

3.3.1 Estimating Conditional Probability P(p|d)

The probability P(p|d) can be interpreted as a degree of belief that phenotype p is

observed when disease d has developed. To estimate the probability, we take ad-

vantage of the literature data. Briefly, given a disease name d, a MEDLINE search

is carried out to retrieve articles relevant to d and, within the retrieved articles,

we first identify phenotypes (MeSH C terms) strongly associated with the disease

based on chi-square statistic. Chi-square is commonly used for testing the inde-

pendence between two nominal variables and has been used for many applications.

Examples include identifying most discriminative features (terms) for text catego-

rization (Yang and Pedersen, 1997) and discovering significant word collocations

in a given corpus in statistical natural language processing (Manning and Schütze,

1999).

Given disease d and phenotype p, the chi-square statistic χ2(d, p) is computed
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as follows.

χ2(d, p) =
N(n11 · n22 − n21 · n12)2

(n11 + n21) (n12 + n22) (n11 + n12) (n21 + n22)
(5)

where N is the total number of articles in MEDLINE, n11 is the number of articles

assigned p and included in the retrieved set (denoted as R), n22 is the number of

articles not assigned p and not included in R, n21 is the number of articles not

assigned p and included in R, and n12 is the number of articles assigned p and not

in R.

For estimating P(p|d), we reuse the chi-square statistic and normalize χ2(d, p)

by the maximum to scale it to the range between 0 to 1. It should be mentioned that

there are other measures that can be used for identifying phenotypes and estimating

P(p|d), including IDF, mutual information, or relative frequencies (n11/(n11+n21)).

However, chi-square produced marginally better predictions in our preliminary ex-

periments on cancer-related diseases and was used in this study.

3.3.2 Estimating Conditional Probability P( f | p)

The probability P( f |p) indicates the degree of belief that gene function f underlies

phenotype p. For probability estimation, this study adopts the framework similar

to the one proposed by Perez-Iratxeta et al. (2005). Unlike them, however, this

study focuses on the use of textual data and domain ontologies and investigates

their effects for literature-based discovery. In what follows, we first describe the

estimation method for P( f |p) and then for P( f |p̄).

For probability estimation, our framework uses MEDLINE records that are

assigned any MeSH C terms and are cross-referenced from any gene entry in the

Entrez Gene database. For each of such records, we can obtain a set of phenotypes

(the MeSH C terms assigned to the record) and a set of gene functions (GO terms)

associated with the Entrez Gene entry which cross-references to the MEDLINE

record. Considering the fact that the phenotypes and gene functions are associated

with the same MEDLINE record, it is possible that some of the phenotypes and
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gene functions are associated. A question is what phenotypes and functions are

associated and how strong those associations are.

We estimate those possible associations using two alternative schemes: SchemeK

and SchemeT. SchemeK simply assumes a link between every pair of the phe-

notypes and gene functions with equal strength, whereas SchemeT seeks for ev-

idence in the textual portion of the MEDLINE record, i.e., title and abstract, to

better estimate the strength of associations. Essentially, SchemeT searches for co-

occurrences of gene functions (GO terms) and phenotypes (MeSH C terms) in

a sliding, fixed-size window, assuming that associated concepts tend to co-occur

more often in the same context than unassociated ones. However, a problem of this

strategy is that gene functions and phenotypes are descriptive by nature and may

not be expressed in concise GO and MeSH terms (Camon et al., 2005; Schuemie

et al., 2004). Schuemie et al. analyzed 1,834 articles and reported that less than

30% of MeSH terms assigned to an article actually appear in its abstract and that

only 50% even in its full text. Therefore, relying on mere occurrences of MeSH

terms would fail to capture many true associations.

To deal with the problem, we apply the idea of query expansion, a technique

used in IR to enrich a user query by adding related terms. If GO and MeSH terms

are somehow expanded, there is more chance that they could co-occur in text. For

this purpose, we use the definitions (or scope notes) of GO and MeSH terms and

identify representative terms by inverse document frequencies (IDF), which has

long been used for most IR systems to quantify the specificity of terms in a given

document collection (Sparck Jones, 1972). We treat term definitions as pseudo-

documents and define IDF for term t as

IDF(t) = log
N

Freq(t)
(6)

where N denotes the total number of MeSH C (or GO) terms and Freq(·) denotes

the number of MeSH C (or GO) terms whose definitions contain term t. Only the

terms with high IDF values are used as the proxy terms to represent the original

concept, i.e., gene function or phenotype.
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Each co-occurrence of the terms from those two proxy term sets (one represent-

ing a gene function and the other representing a phenotype) can be seen as evidence

that supports the association between the gene function and phenotype, increasing

the estimated strength of their association. We define the increased strength by

the product of the term weights, w, for the two co-occurring proxy terms. Then,

the strength of the association between gene function f and phenotype p within

article a, denoted as S ( f , p, a), can be defined as the sum of the increases for all

co-occurrences of the proxy terms in a. That is,

S ( f , p, a) =
∑

(t f ,tp,a)

w(t f ) · w(tp)

|Proxy( f )| · |Proxy(p)| (7)

where t f and tp denote any terms in the proxy term sets for f and p, respectively,

and (t f , tp, a) denotes a set of all co-occurrences of t f and tp within a. The product

of the term weights is normalized by the proxy size, |Proxy(·)|, to eliminate the

effect of different sizes. As term weight w, this study uses the TF·IDF weighting

scheme, also from the IR literature. For term tp, for instance, we define

TF(tp) = 1 + log Freq(tp,De f (p)) (8)

where De f (p) denote p’s definition and Freq(tp,De f (p)) denotes the number of

occurrences of tp in De f (p). See Eq. (6) for the definition of IDF.

The association scores, S ( f , p, a), are computed for each cross-reference (a

pair of a MEDLINE record and a gene) by either SchemeK or SchemeT and are

summed over all cross-references to estimate the association between f and p,

denoted as S ( f , p). Based on the accumulated associations, we define probability

P( f |p) as the relative strength of the association, i.e., S ( f , p)/
∑

f ′ S ( f ′, p). In other

words,
∑

f ′ S ( f ′, p) is used to normalize S ( f , p). This way, f can receive a high

probability when the association of f and p stands out among other functions. It

is, however, also possible to use other normalization factors that are independent

of particular f ’s, such as the upper bound of the association score (which is the

number of training instances in our framework). Further investigation is needed to

identify the best strategy.
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Then, for estimating P( f |p̄) where p = 0, we use the association scores be-

tween f and p′(, p). To be precise, we define S ( f , p̄) as the sum of those as-

sociation scores,
∑

p′,p S ( f , p′), and estimate P( f |p̄) as the relative strength of the

association, i.e., S ( f , p̄)/
∑

f ′ S ( f ′, p̄), in the same way as estimating P( f |p) above.

A possible shortcoming of the approach described above is that the obtained

associations S ( f , p) are symmetric despite the fact that the network presented in

Fig. 1 is directional. However, since it is known that an organism’s genotype (in

part) determines its phenotype, not in the opposite direction, we assume that those

estimated associations between gene functions and phenotypes are directed from

the former to the latter.

3.3.3 Estimating Prior Probability P( f )

The probability P( f ) can be interpreted as the degree of belief that f is in effect

when no observation is made (yet). In principle, P( f ) should be high if f is in

general involved in many diseases and should be low otherwise. To reflect the

intuition, we use the number of causative genes with function f , denoted as N( f ),

in training data. Precisely, we estimate P( f ) as the ratio of N( f ) to the total number

of gene-disease pairs in the training data.

3.3.4 Enhancing Probability Estimates P( f | p) by Domain Ontologies

The proposed framework may not be able to establish true associations between

gene functions and phenotypes for various reasons. For example, the amount of

training data may be insufficient. Those true associations may be uncovered using

the structure of MeSH and/or GO. MeSH and GO have a hierarchical structure4 and

those located nearby in the hierarchy are semantically close to each other. Taking

advantage of these semantic relations, we enhance probability estimates P( f |p) as

follows.

Let us denote by A the matrix whose element ai j is the probability P( f j|pi)

4To be precise, GO’s structure is directed acyclic graph, allowing multiple parents.
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and by A′ the other matrix whose element a′
i j

is updated or enhanced probability

P′( f j|pi). Then, A′ can be formalized as A′ = WpAW f , where Wp denotes an

n × n matrix with element wp(i, j) indicating a proportion of a probability to be

transmitted from phenotypes p j to pi. Similarly, W f is an m × m matrix with

w f (i, j) indicating a proportion transmitted from gene functions fi to f j. Here,

we focus only on direct child-to-parent and parent-to-child relations and defines

wp(i, j) as

wp(i, j) =







































































1 if i = j

1

# of children of p j

if pi is a child of p j

1

# of parents of p j

if pi is a parent of p j

0 otherwise

(9)

Eq. (9) means that the amount of probability is simply split equally among its

children (or parents). Similarly, wp(i, j) is defined by replacing i and j in the right-

hand side of Eq. (9). Note that this enhancement process can be iteratively applied

to take advantage of more distant relationships than children or parents.

4 Evaluation

To evaluate the validity of the proposed approach, we implemented a prototype

system and conducted various experiments on the benchmark data sets created from

the genetic association database (GAD) (Becker et al., 2004). GAD5 is a manually-

curated archive of human genetic studies, containing pairs of a gene and a disease

that are reported to have causative relations.

4.1 Creation of Benchmark Data

For evaluation, a benchmark data set was created as follows using the real-world

data obtained from GAD.

5http://geneticassociationdb.nih.gov
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1. Associate each gene-disease pair with the publication date of the article from

which the GAD entry was created. The date can be seen as the time when

the causative relation became public knowledge.

2. Group gene-disease pairs based on disease names. (Since GAD’s scope in-

cludes complex diseases, one disease may be paired with multiple genes.)

3. For each pair of a disease and its causative gene(s),

(a) Identify the gene whose relation to the disease was most recently reported

based on the publication date. If the date is on or after 7/1/2003, the gene

will be used as a target (i.e., new knowledge), and the disease and the rest of

the causative genes will be used as system input (i.e., old knowledge). The

particular date was arbitrarily chosen by considering the size of the resulting

data and available resources for parameter estimation.

(b) Remove the most recently reported gene identified above from the set of

causative genes and repeat the previous step (3a).

The separation of the data by publication dates ensures that a training phase

does not use new knowledge so as to simulate gene-disease association discovery.

Tab. 1 shows the number of gene-disease associations in the resulting test data cat-

egorized under six disease classes defined in GAD. In the following experiments,

the cancer class was used for system development and parameter tuning, and the

other classes were used for test.

Table 1: Number of gene-disease associations in the benchmark data.

Cancer
Cardio-

vascular
Immune Metabolic Psych Unknown Total

45 36 61 23 12 80 257

12



4.2 Experimental Setup

Given input (disease name d, known causative genes, and a target region), the

system computes the probability P(d|G) as in Eq. (3) for each candidate gene g

located in the target region (if given), where G is a set of the known causative

genes plus g. The candidate genes are then outputted in a decreasing order of their

probabilities as system output.

As an evaluation metric, we use area under the ROC curve (AUC) for its attrac-

tive property as compared to F-score; That is, AUC is not affected by changes in

class distribution, i.e., the proportion of positive to negative instances (see Fawcett,

2004, for more detailed discussion).

ROC curves are two dimensional measure for system performance with y axis

being true positive proportion (TPP) and x axis being false positive proportion

(FPP). TPP is defined as TP/(TP+FN), and FPP as FP/(FP+TN), where TP, FP,

FN, and FP denote the number of true positives, false positives, false negatives,

and false positives, respectively. AUC takes a value between 0 and 1 with 1 being

the best. Intuitively, AUC indicates the chance that a system ranks a gene ran-

domly picked from the positive set more highly than one from the negative set. To

be effective, therefore, AUC must be at least higher than 0.5 which corresponds to

a pure guess.

As literature data, this study uses a subset of the MEDLINE data provided

for the TREC Genomics Track 2004 (Hersh et al., 2004). The data consist of the

records created between the years 1994 and 2003, which account for around one-

third of the entire MEDLINE database. Within these data, 29,158 cross-references

(pairs of a MEDLINE record and a gene) were identified as the training data such

that they satisfied all of the following conditions:

1. The MEDLINE records are assigned one or more MeSH C terms to be used

as phenotypes,

2. The MEDLINE records are cross-referenced from an Entrez Gene entry so
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as to obtain gene functions assigned to the entry,

3. The MEDLINE records have publication dates before 7/1/2003 so as to avoid

using new knowledge.

4. The cross-references do not originate from the 257 target genes so as to avoid

using possible direct evidence,

Using the literature data, the cross-references, and the tuning data in the cancer

class, several parameters were empirically determined for each scheme, SchemeK

and SchemeT, to maximize AUC. Those parameters include the number of MED-

LINE articles as the source of phenotypes (nm), threshold for chi-square statistic

to determine phenotypes (tc), threshold for IDF to determine proxy terms (tt), and

window size for co-occurrences (ws). For SchemeT, for instance, they were set as

nm=700, tc=2.0, tt=5.0, and ws=10 (words) by testing numbers of their possible

combinations.

4.3 Results

4.3.1 Overall Performance

With the best parameter settings determined for the cancer class, the system was

applied to all the other classes. Tab. 2 shows the system performance in AUC.

Table 2: System performance in AUC for each disease class. The figures in the

parentheses indicate percent increase/decrease relative to SchemeK.

Scheme
Cardio-

vascular
Immune Metabolic Psych Unknown Overall

K 0.677 0.686 0.684 0.514 0.703 0.682

T
0.737 0.668 0.623 0.667 0.786 0.713

(8.9%) (-2.6%) (-9.0%) (29.8%) (11.7%) (4.6%)

Both SchemeK and SchemeT achieved significantly higher AUC than 0.5 (i.e.,

random guess), indicating the validity of the general framework adapting the infer-
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ence network for predicting implicit associations. Comparing the two schemes, it

is observed that SchemeT does not always outperform SchemeK depending on the

disease class. However, the overall tendency suggests the advantage of the use of

textual data to acquire more precise associations between biological concepts. For

the Immune and Metabolic classes, in which AUC dropped by 2.6–9.0%, a close

investigation is needed to determine the cause of the problem. Incidentally, without

proxy terms described in Section 3.3.2, the overall AUC by SchemeT decreased to

0.682 (not shown in Tab. 2), verifying the effectiveness of the use of proxy terms.

4.3.2 System Performance with Different Size of the Literature

As described in Section 4.2, the MEDLINE data used for this study are about one-

third of the entire database, which also restricts the number of cross-references

that can be used for parameter estimation. Although the experiment in the previous

section has shown the effectiveness of the proposed approach even with the limited

amount of data, further improvement might be achieved with larger literature data.

To study the potential of the framework, this section examines the relation between

the system performance and the size of the literature.

From the available 29,158 cross-references (pairs of a gene and a MEDLINE

record), we randomly chose 2,500, 5,000, 7,500, 15,000, and 22,500 pairs for pa-

rameter estimation. Based on each of the subsets, probabilities P( f |p) were sep-

arately calculated with SchemeK and SchemeT. Then, they were used to estimate

P(d|G) for the test data in all the disease classes (including the cancer class) for

comparison. Fig. 2 plots the results where x and y axes represent AUC and the

number of cross-references, respectively. Notice that the right-most dots corre-

spond to the case where all the available cross-references are used.

There is an immediate increase when the number of cross references increases

from 2,500 to 5,000 irrespective of the schemes. Then, for SchemeT, AUC almost

linearly increases with the size of training data, while, for SchemeK, it slows down

after using 15,000 cross-references. This result suggests that, with larger MED-
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Figure 2: Relation between AUC and the number of cross-references used for esti-

mating P( f |p).

LINE data, we may witness a greater advantage of SchemeT over SchemeK.

4.3.3 Impact of Full-Text Articles

This section reports our preliminary experiments examining the impact of full text

articles for literature-based discovery. Since full-text articles provide more com-

prehensive information than abstracts, they are thought to be beneficial for the text

data mining research, such as ours. We use the full-text collection from the TREC

Genomics Track 2004 (Hersh et al., 2004), which contains 11,880 full-text arti-

cles in the biomedical domain. Among these articles, however, only 679 satisfy the

conditions described in Section 4.2 regarding MeSH C terms, cross-references, and

publication dates. To make a fair comparison, we conducted experiments using the

679 full-text articles and only the corresponding 679 abstract in estimating P( f |p).

Note that, due to the smaller data size used for parameter estimation, the results

reported below cannot be directly compared to those described in the previous sec-

tions.

Tab. 3 summarizes the results obtained based on only titles and abstracts (“Abs”)

and complete full-text articles (“Full”), both using SchemeT. (As SchemeK does
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not use textual information, there is no distinction between Abs and Full for SchemeK.)

Table 3: System performance in AUC based on 679 articles. The figures in the

parentheses indicate percent increase/decrease relative to Abs.

Text
Cardio-

vascular
Immune Metabolic Psych Unknown Overall

Abs 0.652 0.612 0.566 0.623 0.693 0.643

Full
0.737 0.590 0.640 0.724 0.731 0.676

(13.0%) (-3.6%) (13.0%) (16.2%) (5.5%) (5.1%)

Examining each disease class, it is observed that the use of full-text articles lead to

a large improvement over using abstracts except for the immune class. Overall, the

improvement achieved by full texts is 5.1%, indicating the potential advantage of

full text articles.

4.3.4 Enhancing Probability Estimates by Domain Ontologies

In order to examine the effectiveness of the use of domain ontologies for enhanc-

ing P( f |p), we then applied the proposed method described in Section 3.3.4 to

SchemeT in Tab. 2 and to Full in Tab. 3. (Note that Full is also based on SchemeT

for estimating P( f |p) but uses a small collection of full-text articles instead of ab-

stracts.) Fig. 3 summarizes the results obtained by different number of iterations,

where the left and right graphs correspond to SchemeT and Full, respectively. Inci-

dentally, we used only child-to-parent relations in GO hierarchy for this experiment

without using MeSH as it yielded the best results in the cancer class (i.e., the tuning

data).

For SchemeT, the effects were less consistent across the classes and, overall,

the improvement was small. For Full, on the other hand, we observed clearer im-

provement except for two classes, cardiovascular and psych, and the overall AUC

improved by 4.0% after two times of iterations. The difference may be due to the

fact that the associations learned by Full is more sparse than those by SchemeT as

the number of available cross-references for Full was limited for this experiment.
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Figure 3: System performance after enhancing associations using GO parent-to-

child relations. Three bars in each disease class correspond to # of iterations of

enhancement.

The enhancement was intended to uncover the associations not derived from the

literature, and thus it may have worked favorably for Full. Another possible ac-

count is that the quality of the associations obtained by Full was higher than that

of SchemeT. In other words, if the initial associations are noisy, the enhancement

process would just propagate false associations through the GO structure, which

rather deteriorates system predictions. Our plan is to carry out an experiment with

larger full-text data set, so as to determine the effect of domain ontologies.

4.4 Comparative Experiments

To the best of our knowledge, there have been at least a few attempts to develop and

evaluate approaches to predicting implicit gene-disease associations (Freudenberg

and Propping, 2002; Perez-Iratxeta et al., 2005; Tiffin et al., 2005). This section

makes a rough comparison with the related work by using the same data set and by

presenting the system performance in the form reported by the others. Specifically,

the following focuses on the study by Perez-Iratxeta et al. (2005), which is similar

to the present study in the approach and the experimental design.
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Perez-Iratxeta et al. (2002, 2005) have developed a system, called G2D, to

predict gene-disease associations. G2D is in part similar to SchemeK as it uti-

lizes co-annotations of keywords without looking at textual information, although

it also employs DNA sequence comparison to find homologous genes similar to

those scored highly by keyword co-annotations. As with our system, G2D outputs

a ranked list of candidate genes for a given disease. For evaluation, they conducted

experiments on 100 known gene-disease associations randomly chosen from On-

line Mendelian Inheritance in Man (OMIM).6 Of those 100 associations, they re-

ported that the target genes were successfully found among the 8 best scoring genes

in 47 cases and among the 30 best in 62 cases.

To investigate how our approach is compared with that of Perez-Iratxeta et al.

(2005), we ran our system with SchemeK and SchemeT on the same 100 diseases.

In the training phase, the following cross-references were excluded to avoid using

direct target associations.

• The cross-references originating from the 100 target genes.

• The cross-references pointing to the MEDLINE records which mention any

of the input disease names.

Tab. 4 summarizes the results, in which the number of the target genes successfully

predicted is indicated at each ranking. Note that, among 100 input diseases, 6 could

not be processed either because their target genes were annotated with no GO term

or because the disease names could not be associated with any phenotypes.

As shown, 40 and 49 target genes were found among the 8 best scoring genes,

and 64 and 75 among the 30 best scoring genes by SchemeK and SchemeT, respec-

tively (shown in boldface). Comparing with the results obtained by Perez-Iratxeta

et al. (2005), i.e., 47 genes among the 8 best and 62 genes among the best 30,

SchemeT successfully predicted 2 and 13 more true associations among the 8 and

30 best candidates, respectively.

6http://www.ncbi.nlm.nih.gov/omim/
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Table 4: Numbers of target genes correctly predicted above each ranking for 100

monogenic diseases. GAD’s cumulative sums are reported only for 8th and 30th

(Perez-Iratxeta et al., 2005).

Ranking

SchemeK SchemeT GAD

Number of

target genes

Cumulative

sum

Number of

target genes

Cumulative

sum

Cumulative

sum

1 10 10 18 18 —

2 6 16 4 22 —

3 7 23 6 28 —

4 5 28 7 35 —

5 4 32 2 37 —

...
...

...
...

...
...

8 3 40 4 49 47

...
...

...
...

...
...

30 1 64 0 75 62

It should be noted that their results and this study are not directly compara-

ble because the experimental settings are not exactly the same. For example, the

candidate genes considered in their study and in this study are different; Perez-

Iratxeta et al. examined genes located near the target gene (around 30 mega bases),

whereas we examined genes in the same sub-band of the same chromosome as the

target gene. In addition, Perez-Iratxeta et al. used the entire MEDLINE database

for prediction, whereas we used only one-third of it. Although there are such dif-

ferences in the specifics of the experiments, our results are promising and suggest

that it be worthwhile further exploration.

5 Conclusion

This study was motivated by Swanson’s work in literature-based discovery and in-

vestigated the application of IR models and techniques in conjunction with the use

of domain-specific resources, such as the Entrez Gene database and Gene Ontol-

ogy. The key findings of the present work can be summarized as follows.
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• The model and techniques developed for IR, which targets explicit informa-

tion, were shown both applicable and effective for predicting implicit gene-

disease associations.

• The consideration of textual information (i.e., SchemeT) improved system

prediction by 4.6% in AUC over simply relying on co-annotations of MeSH

C terms and GO terms (i.e., SchemeK).

• Using full text improved overall AUC by 5.1% as compared to using only ab-

stracts, although the database cross-references used for parameter estimation

in the experiment was limited to a relatively small size.

• The hierarchical structure of GO could be leveraged to enhance probability

estimates, especially for those learned from full-text articles.

• The comparative experiment on the 100 diseases from the OMIM database

demonstrated that our approach successfully found more true gene-disease

associations than that of Perez-Iratxeta et al. (2005) by up to 21%.

Moreover, we created realistic benchmark data, where old and new knowledge

were carefully separated to simulate gene-disease association discovery.

For future work, we plan to re-examine the effectiveness of full-text articles in

the proposed framework using a larger data set from the TREC 2006 Genomics

Track (Hersh et al., 2006). Also, we would like to investigate the better use of do-

main ontologies. One direction would be to employ different weighting functions

(wp and w f ) in propagating the probability P( f |p), such as the semantic distance

(Lord et al., 2003; Resnik, 1999) which better reflects the structure of domain on-

tology. Furthermore, we are interested in comparing the proposed framework with

other IR models in order to study the properties and advantages of our proposed

model.
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A Derivation of Formula

This section demonstrates step by step how Eq. (3) is derived from Eq. (2). To begin with,

the first factor in the right-hand side of Eq. (2) can be transformed as follows by Bayes’

theorem and the independence assumption among phenotypes p.

P(d|~pi) =
P(d)P(~pi|d)

P(~pi)

≈ P(d)

n
∏

k=1

P(pk |d)

P(pk)

(10)

Because pi = 1 and pk,i = 0 for any ~pi by definition, the product in the right-hand of

Eq. (10) can be written as follows, where p and p̄ are used as the shorthand of p = 1 and

p = 0, respectively.

n
∏

k=1

P(pk |d)

P(pk)
=

P(pi | d)

P(pi)

∏

k,i

P(p̄k | d)

P(p̄k)

=
P(pi|d)

P(pi)
·

P( p̄i)

P(p̄i|d)

n
∏

k=1

P( p̄k |d)

P(p̄k)

(11)

Then, the second factor in the right-hand side of Eq. (2), P(~pi|~f j), can be transformed

as follows, assuming the independence among phenotypes and among gene functions.

P(~pi|~f j) ≈

n
∏

k=1

P(pk |~f j)

=

n
∏

k=1

P(pk)P(~f j|pk)

P(~f j)

≈

n
∏

k=1

m
∏

h=1

P(pk)
P( fh|pk)

P( fh)

=

n
∏

k=1

P(pk) ×

n
∏

k=1

m
∏

h=1

P( fh|pk)

P( fh)

(12)
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As before, given that pi = 1 and pk,i = 0 for any ~pi and f j = 1 and fh, j = 0 for any ~f j, the

first factor of the right-hand side of Eq. (12) becomes

n
∏

k=1

P(pk) =
P(pi)

P( p̄i)

n
∏

k=1

P( p̄k) (13)

and the second factor becomes

n
∏

k=1

m
∏

h=1

P( fh|pk)

P( fh)
=

P( f j|pi)

P( f j)
×

∏

h, j

P( f̄h|pi)

P( f̄h)
×

∏

k,i

P( f j| p̄k)

P( f j)
×

∏

k,i

∏

h, j

P( f̄h| p̄k)

P( f̄h)

=
P( f j|pi)P( f̄ j| p̄i)

P( f̄ j|pi)P( f j| p̄i)
×

m
∏

h=1

P( f̄h|pi)

P( f̄h| p̄i)
×

n
∏

k=1

P( f̄ j)P( f j| p̄k)

P( f j)P( f̄ j| p̄k)
×

n
∏

k=1

m
∏

h=1

P( f̄h| p̄k)

P( f̄h)
.

(14)

Next, the third factor of Eq. (2), P(~f j|G), can be derived from external knowledge

source, specifically, Entrez Gene, where each gene is annotated with GO terms (i.e., f ’s).

Based on the database, we define P(~f j|G) to be 1 if any gene g ∈ G is annotated with f j in

the database and 0 otherwise. That is,

P(~f j|G) = P( f j|G) =



















1 if ∃g ∈ G is associated with f j

0 otherwise
(15)

where we use P( f j|G) as a simpler representation of P(~f j|G).

Lastly, by applying Eqs. (11), (12), (13), (14), and (15) to Eq. (2) and removing

constants for given d and any G, one could derive Eq. (3).
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