Home > KONAN UNIVERSITY > Faculty of Science and Engineering > Department of Physics

Department of Physics

Education and research cover both pure and applied physics; they range from small extremes (elementary particles and atomic nuclei), through intermediate varieties (quantum-dots, carbon nano-tubes, and semi-conductors), to large systems (stars and the universe). The department has set up two advanced courses in Natural Science and Material Science. Students choose their majors among 7 fields covered by the two courses: theoretical physics, nuclear physics, and astroparticle physics of the Natural Science course; and semiconductor physics, quantum electronics, condensed matter photophysics, and condensed matter and measurements of the Material Science course. Students receive detailed guidance to acquire the special experimental and/or theoretical skills necessary for their majors.

It is our goal to cultivate young people in such a way that after graduation they are capable of playing an active role not only in the natural sciences and advanced industrial science & technologies (especially information and telecommunication), but also in every possible field of society. Toward this goal, students take compulsory subjects of basic physics (classical mechanics, electromagnetism, and quantum mechanics) and physics experiments. These subjects are taught in multiple classes in order to help individual students master the basic knowledge and methodology of physics. In addition, graduation research carried out in labs is defined as a compulsory course as well, in which students take a whole year to experience one cycle of planning, conducting, and assessing to acquire the ability of finding, understanding and solving problems. This practical and intensive education system is designed to meet the various needs of society. It also encourages more and more students to advance to the graduate school for acquiring even higher levels of knowledge and skills.

Faculty member
Name Title Field of Research Subject of Research
KAJINO, Fumiyoshi Professor Cosmic rays, Astrophysics Study of origin and acceleration of extreme energetic cosmic rays. Research and development of new detectors for the study of cosmic rays and elementary particle experiments.
UTSUNOMIYA, Hiroaki Professor Astronuclear Physics Study of origin of very high energy gamma rays.
ANDO, Hiroaki Professor Quantum Electronics, Quantum Information Science Studies on optical nonlinear phenomena in low-dimensional structures and their applications to novel optical devices.
UMEZU, Ikurou Professor Semiconductor Physics, Materials Science Semiconductor nano-technology. Laser processing. Materials science. Biocensor.
KOBORI, Hiromi Professor Solid State Physics 1) Spin-Dependent-Transport Phenomena in Spintronics Materials.
2) Cross-Correlation in Multi-Ferroic Materials.
3) New Function Search for Nano-Materials.
4) Metal-Insulator Transition in Strong-Electron-Correlation Materials.
AKIMUNE, Hidetoshi Professor Nuclear Physics Cluster structure in highly excited nuclei. Study of nuclear structure with laser-compton scattered fチrays.
AOKI, Tamao Professor Solid State Spectroscopy Spectroscopic Study of Single Crystals and Micro Crystallites of Aromatic Molecules.
ICHIDA, Masao Professor Opto and Quantum Electronics Studies on optical nonlinear phenomena in low-dimensional materials and their applications to optical devices.
YAMAMOTO, Tokonatsu Professor Cosmology, Cosmic-Ray Physics, Gamma-Ray Astronomy High-Energy phenomenon in the Universe.
SUSA, Hajime Professor Astrophysics Theoretical studies on the formation of first generation stars/galaxies.
YAMASAKI, Atsushi Professor Solid State Physics Spectroscopic study of bulk electronic structures in strongly correlated electron systems. Magnetic imaging of nanostructures by using Photoemission electron microscope.
TOMINAGA,Nozomu Professor Astrophysics Theoretical and observational studies on supernovae, gamma-ray bursts, and first stars.