Department of Physics

Education and research cover both pure and applied physics; they range from small extremes (elementary particles and atomic nuclei), through intermediate varieties (quantum-dots, carbon nano-tubes, and semi-conductors), to large systems (stars and the universe). The department has set up two advanced courses in Natural Science and Material Science. Students choose their majors from among seven  fields covered by the two courses: theoretical physics, nuclear physics, and astroparticle physics of the Natural Science course; and semiconductor physics, quantum electronics, condensed matter photophysics, and condensed matter and measurements of the Material Science course. Students receive detailed guidance to acquire the experimental and/or theoretical skills necessary for their majors.

It is our goal to cultivate young people in such a way that after graduation they are capable of taking  an active role not only in the natural sciences and advanced industrial science and  technologies (especially information and telecommunication), but also in every possible field of society. Toward this goal, students take compulsory subjects of basic physics (classical mechanics, electromagnetism, and quantum mechanics) and physics experiments. These subjects are taught in multiple classes   to help individual students master the fundamental knowledge and methodology of physics. In addition, students embark on compulsory graduation research conducted in on-site laboratories to gain the experience of carrying out one cycle of planning, conducting, and assessing research. The year-long process helps students to acquire the ability of finding, understanding, and solving problems. This practical and intensive education system is designed to meet the various needs of society. It also encourages more students to advance to the graduate school level to acquire higher levels of knowledge and skills.

Faculty member

Name Title Field of Research Subject of Research
UMEZU, Ikurou Professor Semiconductor Physics, Materials Science Semiconductor nano-technology. Laser processing. Materials science. Biocensor.
KOBORI, Hiromi Professor Solid State Physics 1) Spin-Dependent-Transport Phenomena in Spintronics Materials.
2) Cross-Correlation in Multi-Ferroic Materials.
3) New Function Search for Nano-Materials.
4) Metal-Insulator Transition in Strong-Electron-Correlation Materials.
AKIMUNE, Hidetoshi Professor Nuclear Physics Cluster structure in highly excited nuclei. Study of nuclear structure with laser-compton scattered gamma-rays.
AOKI, Tamao Professor Solid State Spectroscopy Spectroscopic Study of Single Crystals and Micro Crystallites of Aromatic Molecules.
ICHIDA, Masao Professor Opto and Quantum Electronics Studies on optical nonlinear phenomena in low-dimensional materials and their applications to optical devices.
YAMAMOTO, Tokonatsu Professor astro-particle physics High-Energy phenomenon in the Universe.
SUSA, Hajime Professor Astrophysics Theoretical studies on the formation of first generation stars/galaxies.
YAMASAKI, Atsushi Professor Solid State Physics Spectroscopic study of bulk electronic structures in strongly correlated electron systems and exotic superconducting materials.
INOUE, Tsuyoshi Professor Theoretical and Computational Astronomy Galactic star formation and cosmic-ray acceleration at supernova remnants.
TAKAYOSHI, Shinntaro Associate Professor Solid State Physics Theoretical study of dynamical phenomena in materials induced by laser irradiation.
Associate Professor High Energy Astrophysics Study of high energy universe using astronomical satellites and telescopes.
Associate Professor Physics of accelerator and exotic nuclei Development of high power accelerators for the various fields such as physics, engineering, medicine, chemistry, and pharmacy.
Experimental studies of stable and unstable nuclei.