Appearance and Disappearance of Laryngeal Cavity Resonance within a Glottal Cycle

Tatsuya Kitamura, Hironori Takemoto, Seiji Adachi, Parham Mokhtari, and Kiyoshi Honda

ATR Human Information Science Laboratories

This research was conducted as a part of “Research on Human Communication” with funding from the National Institute of Information and Communications Technology of Japan.
Introduction

- The laryngeal cavity generates one of the formants.
- The formant is F4.

Fig. 1: Laryngeal cavity.

Fig. 2: The 1st to 4th resonance modes in the vocal tract (Takemoto et al., 2006).
Question

- The laryngeal cavity has been considered as a closed tube.
- But, the cavity is not a closed tube when the glottis opens.
- Is F4 affiliated with the laryngeal cavity stable during a glottal cycle?

Fig. 3: The 4th resonance mode in the vocal tract.
Previous studies

- When the glottis opens,
 - Bandwidths of the lower three formants are increased (Tarnoczy, 1962).
 - A higher damping of the first formant is observed (Fujimura and Lindqvist, 1971).
 - The frequencies and bandwidths of formants are increased, with the effect being greater at lower frequencies (Flanagan, 1972).
Method

- Explore the effects of the open and closed glottis on the laryngeal cavity resonance during vocal fold vibration by
 1. Simulation using a transmission line model.
 2. Bandpass filter analysis of real speech.
Simulation using transmission line model

- To estimate acoustic effects of glottal opening on the laryngeal cavity resonance.
- Vocal tract area functions (VTAFs)
 - Measured from 3D MR images of three Japanese male subjects A, B, and C.
 - The five Japanese vowels (/a/, /e/, /i/, /o/, and /u/).
- Calculate velocity-to-velocity transfer functions based on a frequency-domain transmission line model up to 5 kHz.
Conditions

1. Closed-glottis condition: $A_g = 0.0 \text{ cm}^2$
 - glottal impedance $Z_g = \infty$

2. Open-glottis condition: $A_g = 0.2 \text{ cm}^2$

$$Z_g = R_g + j \omega L_g$$
- viscosity coefficient
- depth of the glottal slit
- length of the glottal slit
- air density
- subglottal pressure

$$= \left(\frac{12 \mu d_g l_g^2}{A_g^3} + \frac{0.875}{A_g} \sqrt{2 p_0 \rho} \right) + j \omega \frac{\rho d_g}{A_g}$$

(Ishizaka and Flanagan, 1972; Flanagan, 1972)

3. Vocal tract proper
 - Vocal tract excluding the laryngeal cavity.
 - Closed-glottis condition.
Parameters

- viscosity coefficient μ : 1.88×10^{-5} kg/(sec·m)
- depth of the glottal slit d_g : 3 mm
- length of the glottal slit l_g : 18 mm
- subglottal pressure p_0 : 10 cmH$_2$O
- air density ρ : 1.12 kg/m3
Results for subject A

Fig. 4: Velocity-to-velocity transfer functions with the three conditions for the Japanese five vowels from subject A.

blue line: closed-glottis condition
red line: open-glottis condition
black line: vocal tract proper
Results for subjects B and C

Fig. 5: Transfer functions with the three conditions for the Japanese five vowels from subjects B and C.
Discussion

- One of the formants appears in the closed-glottis state and disappears in the open-glottis state.
- This formant disappears on the transfer functions of the vocal tract proper.
- The formant is the laryngeal cavity resonance.
Discussion

The transfer functions for the open-glottis condition.

Those of the vocal tract proper.

The vocal tract for the open-glottis condition.

The vocal tract proper with a large loss at its closed end.
Transfer functions for the vowel /a/

Fig. 6: Transfer functions with the three conditions for the vowel /a/ from subject A.

Fig. 1: The 1st to 4th resonance modes in the vocal tract.
Bandpass filter analysis

- To extract the time-pattern of the laryngeal cavity resonance.
- Speech data
 - The sustained vowels /a/ and /i/ for the subjects.
- FIR bandpass filters (BPF)
 - designed by the window method
 - the passbands of the BPFs includes the subjects’ F2, F3, F4 (the laryngeal cavity resonance), and F5.
 - the bandwidth of all the BPF is 0.4 kHz.
Speech data

- The five vowels of the three subjects.
- Steady phonation.
- Recorded in an anechoic room at sampling rate of 48 kHz with 16-bit resolution.
- Electroglottograph (EGG) waveforms were recorded simultaneously to estimate open- and closed-glottis periods.
- The time lag between the speech and EGG waveform was compensated.
Passband

Table 2. BPF passbands including the subjects’ F2, F3, F4, and F5. The bandwidth of all bandpass filters is set to 0.4 kHz.

<table>
<thead>
<tr>
<th>subject</th>
<th>vowel</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH</td>
<td>/a/</td>
<td>0.90-1.30 kHz</td>
<td>2.05-2.45 kHz</td>
<td>2.90-3.30 kHz</td>
<td>3.25-3.65 kHz</td>
</tr>
<tr>
<td></td>
<td>/i/</td>
<td>1.90-2.30 kHz</td>
<td>2.75-3.15 kHz</td>
<td>3.05-3.45 kHz</td>
<td>3.40-3.80 kHz</td>
</tr>
<tr>
<td>TI</td>
<td>/a/</td>
<td>0.95-1.35 kHz</td>
<td>2.40-2.80 kHz</td>
<td>3.30-3.70 kHz</td>
<td>3.95-4.35 kHz</td>
</tr>
<tr>
<td></td>
<td>/i/</td>
<td>2.00-2.40 kHz</td>
<td>2.70-3.10 kHz</td>
<td>3.40-3.80 kHz</td>
<td>3.55-3.95 kHz</td>
</tr>
<tr>
<td>YT</td>
<td>/a/</td>
<td>0.80-1.20 kHz</td>
<td>2.60-3.00 kHz</td>
<td>3.15-3.55 kHz</td>
<td>3.40-3.80 kHz</td>
</tr>
<tr>
<td></td>
<td>/i/</td>
<td>2.00-2.40 kHz</td>
<td>2.80-3.20 kHz</td>
<td>3.20-3.60 kHz</td>
<td>3.80-4.20 kHz</td>
</tr>
</tbody>
</table>
Results

Fig. 7: Outputs of BPFs for the vowel /a/ of subject A, with the passband including F2, F3, F4, and F5, for sustained vowel /a/.
Results

Fig. 8: Outputs of BPFs for with the passband includes F2, F3, F4, and F5 for sustained vowel /i/.
Results

Fig. 11: Outputs of BPFs for with the passband includes F2, F3, F4, and F5 for sustained vowels /a/ and /i/.
Results

Fig. 12: Outputs of BPFs for with the passband includes F2, F3, F4, and F5 for sustained vowels /a/ and /i/.
Conclusion

- One of the formants (the laryngeal cavity resonance)
 - appears during the closed-glottis periods
 - disappears during the open-glottis periods

- The laryngeal cavity
 - acts as a closed tube to generate the resonance when the glottis is closed.
 - damps the resonance off when the glottis opens.
Pitch-synchronous short-term spectral analysis

- To explore the cyclicity of the laryngeal cavity resonance due to the glottal vibration for vowels.

Method

- Estimate power spectral densities (PSDs) during glottal open and closed periods by Burg’s method.
- PSDs were obtained from AR model parameters averaged over five successive periods.
- AR model order p was chosen to minimize the minimum description length (Rissanen, 1983).

\[
MDL[p] = N \ln(\hat{\rho}_p) + p \ln(N)
\]

N the number of data samples

$\hat{\rho}_p$ estimated white noise variance
PSDs for subject A

blue line: closed-glottis period
red line: open-glottis period

Fig. 6: Power spectral densities of closed- and open-glottis periods for the Japanese five vowels from subject A.
PSDs for subjects B and C

Blue line: closed-glottis period
Red line: open-glottis period

Fig. 10: PSDs of open- and closed-glottis periods for the Japanese five vowels from subjects B and C.
Table 1. Model order for short-term spectral analysis for open- and closed-glottis period of vowels optimized by minimizing the minimum description length.

<table>
<thead>
<tr>
<th>subject</th>
<th>glottal condition</th>
<th>/a/</th>
<th>/e/</th>
<th>/i/</th>
<th>/o/</th>
<th>/u/</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH</td>
<td>closed</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>open</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>TI</td>
<td>closed</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>open</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>YT</td>
<td>closed</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>open</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>